Firing and Contact Resistivity of Ag2O-Aided Pb-Free Silver Paste for Crystalline Silicon Solar Cells

Article Preview

Abstract:

The silver pastes containing Ag2O powder, Ag powder, α-terpineol, ethyl-cellulose and Pb-free glass were synthesized for crystalline silicon (c-Si) solar cells. It was found that α-terpineol assisted the decomposition of Ag2O powder and effectively lowered the decomposition temperature of Ag2O. Ag nanoparticles were produced during the decomposition of Ag2O, which helped to reduce the sintering temperature of the silver pastes. The Ag2O-aided silver pastes were fired on polycrystalline silicon solar cells at various temperatures, and large plate-shaped Ag crystallites appeared at the interfaces between the sintered pastes and the emitter, which ensured a good electrical contact. The contact resistivity of Ag2O-aided silver paste with an optimal ratio of Ag2O to Ag was lower than that of the paste with pure Ag powder. The lowest contact resistivity of Ag2O-aided Pb-free silver pastes sintered at 800°C was 0.029 Ω⋅cm2, which was close to that of commercial silver paste that contained Pb-based glass (0.026 Ω⋅cm2). The experimental data demonstrated that the addition of Ag2O reduced the contact resistance and promoted the sintering of Pb-free silver pastes, and Ag2O-aided Pb-free silver paste could be a promising candidate used for front-contact electrode of c-Si solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-130

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Mater. 2 (2010) 96–102.

DOI: 10.1038/asiamat.2010.82

Google Scholar

[2] W. Li, T. Wu. R. Jiao, B. -P Zhang, S. Li, Y. Zhou, L. Li, Effects of silver nanoparticles on the firing behavior of silver paste on crystalline silicon solar cells,  Colloid Surf. A-Physicochem. Eng. Asp. 466 (2015) 132–137.

DOI: 10.1016/j.colsurfa.2014.11.018

Google Scholar

[3] D.K. Schroder, D.L. Meier, Solar cell contact resistance–a review, IEEE Trans. Electron Dev. 31 (1984) 637–647.

DOI: 10.1109/t-ed.1984.21583

Google Scholar

[4] A. Kalio, M. Leibinger, A Filipovic, K. Krüger, M. Glatthaar, J. Wilde, Development of Pb-free silver ink for front contact metallization, Sol. Energy Mater. Sol. Cells. 106 (2012) 51–54.

DOI: 10.1016/j.solmat.2012.05.044

Google Scholar

[5] Y.N. Ko, H.Y. Koo, J.H. Yi, J.H. Kim, Y.C. Kang, Characteristics of Pb-based glass frit prepared by spray pyrolysis as the inorganic binder of silver electrode for Si solar cells, J. Alloys Compd. 490 (2010) 582–588.

DOI: 10.1016/j.jallcom.2009.10.091

Google Scholar

[6] Q. Che, H. Yang, L. Lu, Y. Wang, A new environmental friendly silver front contact paste for crystalline silicon solar cells, J. Alloys Compd. 549 (2013) 221–225.

DOI: 10.1016/j.jallcom.2012.09.080

Google Scholar

[7] S.B. Cho, K. K Hong, B. M Chung, J. Y Huh, Influence of firing ambience on fire-through silver contact metallization for crystalline silicon solar cells, in: 34th IEEE Photovoltaic Specialists Conference, PVSC 2009, Institute of Electrical and Electronics Engineers Inc., Philadelphia, PA, United states, 2009, pp.766-769.

DOI: 10.1109/pvsc.2009.5411172

Google Scholar

[8] Y. Ren, Y. Yang, T. Bao, C. Fan, G. Chen, Investigation of the effect of forming gas annealing on front silver electrodes of c-Si solar cells, Surf. Interface Anal. 44 (2012) 856-862.

DOI: 10.1002/sia.4918

Google Scholar

[9] L.M. Porter, A. Teicher, D.L. Meier, Phosphorus-doped, silver-based pastes for self-doping ohmic contacts for crystalline silicon solar cells, Sol. Energy Mater. Sol. Cells. 73 (2002) 209–219.

DOI: 10.1016/s0927-0248(01)00126-x

Google Scholar

[10] M.M. Hilali, A. Rohatgi, S Asher, Development of screen-printed silicon solar cells with high fill factors on 100 Ω/sq emitters, IEEE Trans. Electron Dev. 51 (2004) 948-955.

DOI: 10.1109/ted.2004.828280

Google Scholar

[11] Y. Yang, S. Seyedmohammadi, U. Kumar, D. Gnizak, E. d. Graddy, A. Shaikh, Screen printable silver paste for silicon solar cells with high sheet resistance emitters, Energy Procedia. 8 (2011) 607-613.

DOI: 10.1016/j.egypro.2011.06.190

Google Scholar

[12] S.B. Rane, P.K. Khanna, T. Seth, G.J. Phatak, D.P. Amalnerkar, B.K. Das, Firing and processing effects on microstructure of fritted silver thick film electrode materials for solar cells, Mater. Chem. Phys. 82 (2003) 237-245.

DOI: 10.1016/s0254-0584(03)00236-0

Google Scholar

[13] G. Schubert, F. Huster, P. Fath, Physical understanding of printed thick-film front contacts of crystalline Si solar cells-review of existing models and recent developments, Sol. Energy Mater. Sol. Cells. 90 (2006) 3399-3406.

DOI: 10.1016/j.solmat.2006.03.040

Google Scholar

[14] K.K. Hong, S.B. Cho, J.S. You, J. W Jeong, S.M. Bea, J.Y. Huh, Mechanism for the formation of Ag crystallites in the Ag thick-film contacts of crystalline Si solar cells, Sol. Energy Mater. Sol. Cells. 93 (2009) 898-904.

DOI: 10.1016/j.solmat.2008.10.021

Google Scholar

[15] K.K. Hong, S.B. Cho, J. Y Huh, H.J. Park, J.W. Jeong, Role of PbO-based glass frit in Ag thick-film contact formation for crystalline Si solar cells, Met. Mater. Int. 15 (2009) 307-312.

DOI: 10.1007/s12540-009-0307-1

Google Scholar

[16] H. Yu, L. Li, Y. Zhang, Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications, Scripta Mater. 66 (2012) 931-934.

DOI: 10.1016/j.scriptamat.2012.02.037

Google Scholar

[17] G. Guo, W. Gan, F. Xiang, J. Zhang, H. Zhou, H. Liu, J. Luo, Effect of dispersibility of silver powders in conductive paste on microstructure of screen-printed front contacts and electrical performance of crystalline silicon solar cells, J. Mater. Sci.: Mater. Electron. 22 (2011).

DOI: 10.1007/s10854-010-0172-1

Google Scholar

[18] K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, C.P. Wong, Thermal behavior of silver nanoparticles for low-temperature interconnect applications, J. Electro. Mater. 34 (2005) 168-175.

DOI: 10.1007/s11664-005-0229-8

Google Scholar

[19] Q. Che, H. Yang, L. Lu, Y. Wang, Nanoparticles-aided silver front contact paste for crystalline silicon solar cells, J. Mater. Sci.: Mater. Electron. 24 (2013) 524-528.

DOI: 10.1007/s10854-012-0941-0

Google Scholar

[20] S.H. Park, D.S. Seo, J.K. Lee, Preparation of Pb-free silver paste containing nanoparticles, Colloid Surf. A-Physicochem. Eng. Asp. 197 (2008) 313–314.

DOI: 10.1016/j.colsurfa.2007.04.092

Google Scholar

[21] D.S. Seo, S.H. Park, J.K. Lee, Sinterability and conductivity of silver paste with Pb-free frit, Curr. Appl. Phys. 9 (2009) S72–S74.

DOI: 10.1016/j.cap.2008.08.011

Google Scholar

[22] J.H. Yi, H.Y. Koo, J.H. Kim, Y.N. Ko, Y.J. Hong, Y.C. Kang, H.M. Lee, Pb-free glass frits prepared by spray pyrolysis as inorganic binders of Al electrodes in Si solar cells, J. Alloys Compd. 509 (2011) 6325–6331.

DOI: 10.1016/j.jallcom.2011.03.085

Google Scholar

[23] J.H. Kim, H.Y. Koo, Y.N. Ko, Y.C. Kang, Characteristics of Bi-based glass frit having similar mean size and morphology to those of silver powders at high firing temperatures, J. Alloys Compd. 497 (2010) 259–266.

DOI: 10.1016/j.jallcom.2010.03.022

Google Scholar

[24] S.J. Jeon, S.M. Koo, S. A Hwang, Optimization of lead-and cadmium-free front contact silver paste formulation to achieve high fill factors for industrial screen-printed Si solar cells, Sol. Energy Mater. Sol. Cells. 93 (2009) 1103-1109.

DOI: 10.1016/j.solmat.2009.01.003

Google Scholar

[25] A. Hirose, H. Tatsumi, N. Takeda, Y. Akada, T. Ogura, E. Ide, T. Morita, A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag2O microparticles, J. Phys. Conf. Ser. 165 (2009) 012074–012079.

DOI: 10.1088/1742-6596/165/1/012074

Google Scholar

[26] T. Morita, Y. Yasuda, E. Ide, Y. Akada, A. Hirose, Bonding technique using micro-scaled silver-oxide particles for in-situ formation of silver nanoparticles, Mater. Trans. 49 (2008) 2875–2880.

DOI: 10.2320/matertrans.mra2008269

Google Scholar