[1]
S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells, Chem. Rev. 107 (2007) 1324-1338.
DOI: 10.1021/cr050149z
Google Scholar
[2]
T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S.Z.D. Cheng, Y. Cao, Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer, Adv. Energy Mater. 2 (2012) 523-527.
DOI: 10.1002/aenm.201100598
Google Scholar
[3]
J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. -C. Chen, J. Gao, G. Li, Y. Yang, A polymer tandem solar cell with 10. 6% power conversion efficiency, Nat. Commun. 4 (2013) 1446.
DOI: 10.1038/ncomms2411
Google Scholar
[4]
R. Steim, F.R. Kogler, C.J. Brabec, Interface materials for organic solar cells, J. Mater. Chem. 20 (2010) 2499-2512.
DOI: 10.1039/b921624c
Google Scholar
[5]
H. Ma, H. -L. Yip, F. Huang, A.K.Y. Jen, Interface engineering for organic electronics, Adv. Funct. Mater. 20 (2010) 1371-1388.
DOI: 10.1002/adfm.200902236
Google Scholar
[6]
G. Heywang, F. Jonas, Poly(alkylenedioxythiophene)s—new, very stable conducting polymers, Adv. Mater. 4 (1992) 116-118.
DOI: 10.1002/adma.19920040213
Google Scholar
[7]
F. Zhang, M. Johansson, M.R. Andersson, J.C. Hummelen, O. Inganäs, Polymer Photovoltaic Cells with Conducting Polymer Anodes, Adv. Mater. 14 (2002) 662-665.
DOI: 10.1002/1521-4095(20020503)14:9<662::aid-adma662>3.0.co;2-n
Google Scholar
[8]
M. Jorgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Sol. Energy Mat. Sol. Cells 92 (2008) 686-714.
DOI: 10.1016/j.solmat.2008.01.005
Google Scholar
[9]
M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks, p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proc. Natl. Acad. Sci. 105 (2008) 2783-2787.
DOI: 10.1073/pnas.0711990105
Google Scholar
[10]
N.H. Sun, G.J. Fang, P.L. Qin, Q. Zheng, M.J. Wang, X. Fan, F. Cheng, J.W. Wan, X.Z. Zhao, J.W. Liu, D.L. Carroll, J.M. Ye, Efficient flexible organic solar cells with room temperature sputtered and highly conductive NiO as hole-transporting layer, J. Phys. D: Appl. Phys. 43 (2010).
DOI: 10.1088/0022-3727/43/44/445101
Google Scholar
[11]
V. Shrotriya, G. Li, Y. Yao, C. -W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells, Appl. Phys. Lett. 88 (2006) 073508.
DOI: 10.1063/1.2174093
Google Scholar
[12]
P.L. Qin, G.J. Fang, N.H. Sun, X. Fan, Q. Zheng, F. Chen, J.W. Wan, X.Z. Zhao, Organic solar cells with p-type amorphous chromium oxide thin film as hole-transporting layer, Thin Solid Films 519 (2011) 4334-4341.
DOI: 10.1016/j.tsf.2011.02.013
Google Scholar
[13]
P.L. Qin, G.J. Fang, Q. He, N.H. Sun, X. Fan, Q. Zheng, F. Chen, J.W. Wan, X.Z. Zhao, Nitrogen doped amorphous chromium oxide: Stability improvement and application for the hole-transporting layer of organic solar cells, Sol. Energy Mater. Sol. Cells 95 (2011).
DOI: 10.1016/j.solmat.2010.12.015
Google Scholar
[14]
S. Han, W.S. Shin, M. Seo, D. Gupta, S. Moon, S. Yoo, Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes, Org. Electron. 10 (2009) 791-797.
DOI: 10.1016/j.orgel.2009.03.016
Google Scholar
[15]
J. Meyer, R. Khalandovsky, P. Görrn, A. Kahn, MoO3 Films Spin-Coated from a Nanoparticle Suspension for Efficient Hole-Injection in Organic Electronics, Adv. Mater. 23 (2011) 70-73.
DOI: 10.1002/adma.201003065
Google Scholar
[16]
J.W. Jung, W.H. Jo, Annealing-Free High Efficiency and Large Area Polymer Solar Cells Fabricated by a Roller Painting Process, Adv. Funct. Mater. 20 (2010) 2355-2363.
DOI: 10.1002/adfm.201000164
Google Scholar
[17]
H. Jin, C. Tao, M. Velusamy, M. Aljada, Y. Zhang, M. Hambsch, P.L. Burn, P. Meredith, Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules, Adv. Mater. 24 (2012) 2572-2577.
DOI: 10.1002/adma.201104896
Google Scholar
[18]
C. Tao, G. Xie, C. Liu, X. Zhang, W. Dong, F. Meng, X. Kong, L. Shen, S. Ruan, W. Chen, Semitransparent inverted polymer solar cells with MoO3/Ag/MoO3 as transparent electrode, Appl. Phys. Lett. 95 (2009) 053303.
DOI: 10.1063/1.3196763
Google Scholar
[19]
F. Cheng, G.J. Fang, X. Fan, H.H. Huang, Q. Zheng, P.L. Qin, H.W. Lei, Y.F. Li, Enhancing the performance of P3HT: ICBA based polymer solar cells using LiF as electron collecting buffer layer and UV–ozone treated MoO3 as hole collecting buffer layer, Sol. Energy Mat. Sol. Cells 110 (2013).
DOI: 10.1016/j.solmat.2012.12.006
Google Scholar
[20]
M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu, Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3, Adv. Funct. Mater. 23 (2013) 215-226.
DOI: 10.1002/adfm.201200993
Google Scholar
[21]
K.H. Wong, K. Ananthanarayanan, J. Luther, P. Balaya, Origin of Hole Selectivity and the Role of Defects in Low-Temperature Solution-Processed Molybdenum Oxide Interfacial Layer for Organic Solar Cells, J. Phys. Chem. C 116 (2012) 16346-16351.
DOI: 10.1021/jp303679y
Google Scholar
[22]
X. -B. Shi, M. -F. Xu, D. -Y. Zhou, Z. -K. Wang, L. -S. Liao, Improved cation valence state in molybdenum oxides by ultraviolet-ozone treatments and its applications in organic light-emitting diodes, Appl. Phys. Lett. 102 (2013) 233304.
DOI: 10.1063/1.4811267
Google Scholar
[23]
X. -C. Jiang, Y. -Q. Li, Y. -H. Deng, Q. -Q. Zhuo, S. -T. Lee, J. -X. Tang, Anode modification of polymer light-emitting diode using graphene oxide interfacial layer: The role of ultraviolet-ozone treatment, Appl. Phys. Lett. 103 (2013) 073305.
DOI: 10.1063/1.4818820
Google Scholar
[24]
M.G. Helander, Z.B. Wang, M.T. Greiner, Z.W. Liu, K. Lian, Z.H. Lu, The effect of UV ozone treatment on poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate), Appl. Phys. Lett. 95 (2009) 173302.
DOI: 10.1063/1.3257382
Google Scholar
[25]
X. Fan, G.J. Fang, P.L. Qin, N.H. Sun, N.S. Liu, Q. Zheng, F. Cheng, L.Y. Yuan, X.Z. Zhao, Deposition temperature effect of RF magnetron sputtered molybdenum oxide films on the power conversion efficiency of bulk-heterojunction solar cells, J. Phys. D: Appl. Phys. 44 (2011).
DOI: 10.1088/0022-3727/44/4/045101
Google Scholar
[26]
M. Dieterle, G. Weinberg, G. Mestl, Raman spectroscopy of molybdenum oxides Part I. Structural characterization of oxygen defects in MoO3- by DR UV/VIS, Raman spectroscopy and X-ray diffraction, Phys. Chem. Chem. Phys. 4 (2002) 812-821.
DOI: 10.1039/b107012f
Google Scholar
[27]
T.M. McEvoy, K.J. Stevenson, Spatially Resolved Imaging of Inhomogeneous Charge Transfer Behavior in Polymorphous Molybdenum Oxide. I. Correlation of Localized Structural, Electronic, and Chemical Properties Using Conductive Probe Atomic Force Microscopy and Raman Microprobe Spectroscopy, Langmuir 21 (2005).
DOI: 10.1021/la047276v
Google Scholar
[28]
M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu, Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies, Adv. Funct. Mater. 22 (2012) 4557-4568.
DOI: 10.1002/adfm.201200615
Google Scholar
[29]
C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, Handbook of X-ray photoelectron spectroscopy, in: G.E. Muilenberg (Ed. ), Perkin Elmer Corporation, Eden Prairie, 1979, pp.104-105.
Google Scholar
[30]
D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell, D.S.L. Law, Theoretical and Experimental Study of the Electronic Structures of MoO3 and MoO2, J. Phys. Chem. C 114 (2010) 4636-4645.
DOI: 10.1021/jp9093172
Google Scholar
[31]
V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides, in, Cambridge University Press, Cambridge, (1994).
Google Scholar
[32]
M.A. Lampert, P. Mark, Current Injection in Solids, in, Academic, New York, 1970, p.15–55.
Google Scholar
[33]
C. Brabec, V. Dyakonov, U. Scherf, Organic Photovoltaics: materials, device physics, and manufacturing technologies, in, Wiley-VCH, Weinheim, (2008).
Google Scholar
[34]
M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency, Adv. Mater. 18 (2006) 789-794.
DOI: 10.1002/adma.200501717
Google Scholar
[35]
G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Design rules for donors in bulk-heterojunction tandem solar cells-towards 15 % energy-conversion efficiency, Adv. Mater. 20 (2008) 579-583.
DOI: 10.1002/adma.200702337
Google Scholar
[36]
W.U. Huynh, J.J. Dittmer, N. Teclemariam, D.J. Milliron, A.P. Alivisatos, K.W.J. Barnham, Charge transport in hybrid nanorod-polymer composite photovoltaic cells, Phys. Rev. B 67 (2003) 115326.
DOI: 10.1103/physrevb.67.115326
Google Scholar
[37]
J.D. Servaites, S. Yeganeh, T.J. Marks, M.A. Ratner, Efficiency enhancement in organic photovoltaic cells: Consequences of optimizing series resistance, Adv. Funct. Mater. 20 (2010) 97-104.
DOI: 10.1002/adfm.200901107
Google Scholar
[38]
X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, J.T.L. Navarrete, S. Li, J. Strzalka, L.X. Chen, R.P.H. Chang, A. Facchetti, T.J. Marks, Polymer solar cells with enhanced fill factors, Nat. Photon. (2013) 825–833.
DOI: 10.1038/nphoton.2013.207
Google Scholar