Eliminated the Internal Stress in Molybdenum Oxides by Ultraviolet-Ozone Treatment and its Application to Organic Solar Cell

Article Preview

Abstract:

A simple and efficient method has been developed to eliminate the internal stress in molybdenum oxides by an ultraviolet ozone treatment. The results of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and Raman spectroscopy indicate that oxygen vacancy was a determining factor of the compressive stress in MoO3, which can be released by ultraviolet ozone treatment. Based on this hole-transporting layer, the photovoltaic power conversion efficiency up to 3.91% was achieved, which is 22% higher than that without ultraviolet ozone treatment. And ultraviolet ozone treatment on MoO3 is a useful method to embellish the interface to enhance the ability of collecting hole of hole-transporting layer to improve the performance of OSC with MoO3 film as hole-transporting layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-116

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells, Chem. Rev. 107 (2007) 1324-1338.

DOI: 10.1021/cr050149z

Google Scholar

[2] T. Yang, M. Wang, Y. Cao, F. Huang, L. Huang, J. Peng, X. Gong, S.Z.D. Cheng, Y. Cao, Polymer solar cells with a low-temperature-annealed sol-gel-derived MoOx film as a hole extraction layer, Adv. Energy Mater. 2 (2012) 523-527.

DOI: 10.1002/aenm.201100598

Google Scholar

[3] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. -C. Chen, J. Gao, G. Li, Y. Yang, A polymer tandem solar cell with 10. 6% power conversion efficiency, Nat. Commun. 4 (2013) 1446.

DOI: 10.1038/ncomms2411

Google Scholar

[4] R. Steim, F.R. Kogler, C.J. Brabec, Interface materials for organic solar cells, J. Mater. Chem. 20 (2010) 2499-2512.

DOI: 10.1039/b921624c

Google Scholar

[5] H. Ma, H. -L. Yip, F. Huang, A.K.Y. Jen, Interface engineering for organic electronics, Adv. Funct. Mater. 20 (2010) 1371-1388.

DOI: 10.1002/adfm.200902236

Google Scholar

[6] G. Heywang, F. Jonas, Poly(alkylenedioxythiophene)s—new, very stable conducting polymers, Adv. Mater. 4 (1992) 116-118.

DOI: 10.1002/adma.19920040213

Google Scholar

[7] F. Zhang, M. Johansson, M.R. Andersson, J.C. Hummelen, O. Inganäs, Polymer Photovoltaic Cells with Conducting Polymer Anodes, Adv. Mater. 14 (2002) 662-665.

DOI: 10.1002/1521-4095(20020503)14:9<662::aid-adma662>3.0.co;2-n

Google Scholar

[8] M. Jorgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Sol. Energy Mat. Sol. Cells 92 (2008) 686-714.

DOI: 10.1016/j.solmat.2008.01.005

Google Scholar

[9] M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks, p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proc. Natl. Acad. Sci. 105 (2008) 2783-2787.

DOI: 10.1073/pnas.0711990105

Google Scholar

[10] N.H. Sun, G.J. Fang, P.L. Qin, Q. Zheng, M.J. Wang, X. Fan, F. Cheng, J.W. Wan, X.Z. Zhao, J.W. Liu, D.L. Carroll, J.M. Ye, Efficient flexible organic solar cells with room temperature sputtered and highly conductive NiO as hole-transporting layer, J. Phys. D: Appl. Phys. 43 (2010).

DOI: 10.1088/0022-3727/43/44/445101

Google Scholar

[11] V. Shrotriya, G. Li, Y. Yao, C. -W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells, Appl. Phys. Lett. 88 (2006) 073508.

DOI: 10.1063/1.2174093

Google Scholar

[12] P.L. Qin, G.J. Fang, N.H. Sun, X. Fan, Q. Zheng, F. Chen, J.W. Wan, X.Z. Zhao, Organic solar cells with p-type amorphous chromium oxide thin film as hole-transporting layer, Thin Solid Films 519 (2011) 4334-4341.

DOI: 10.1016/j.tsf.2011.02.013

Google Scholar

[13] P.L. Qin, G.J. Fang, Q. He, N.H. Sun, X. Fan, Q. Zheng, F. Chen, J.W. Wan, X.Z. Zhao, Nitrogen doped amorphous chromium oxide: Stability improvement and application for the hole-transporting layer of organic solar cells, Sol. Energy Mater. Sol. Cells 95 (2011).

DOI: 10.1016/j.solmat.2010.12.015

Google Scholar

[14] S. Han, W.S. Shin, M. Seo, D. Gupta, S. Moon, S. Yoo, Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes, Org. Electron. 10 (2009) 791-797.

DOI: 10.1016/j.orgel.2009.03.016

Google Scholar

[15] J. Meyer, R. Khalandovsky, P. Görrn, A. Kahn, MoO3 Films Spin-Coated from a Nanoparticle Suspension for Efficient Hole-Injection in Organic Electronics, Adv. Mater. 23 (2011) 70-73.

DOI: 10.1002/adma.201003065

Google Scholar

[16] J.W. Jung, W.H. Jo, Annealing-Free High Efficiency and Large Area Polymer Solar Cells Fabricated by a Roller Painting Process, Adv. Funct. Mater. 20 (2010) 2355-2363.

DOI: 10.1002/adfm.201000164

Google Scholar

[17] H. Jin, C. Tao, M. Velusamy, M. Aljada, Y. Zhang, M. Hambsch, P.L. Burn, P. Meredith, Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules, Adv. Mater. 24 (2012) 2572-2577.

DOI: 10.1002/adma.201104896

Google Scholar

[18] C. Tao, G. Xie, C. Liu, X. Zhang, W. Dong, F. Meng, X. Kong, L. Shen, S. Ruan, W. Chen, Semitransparent inverted polymer solar cells with MoO3/Ag/MoO3 as transparent electrode, Appl. Phys. Lett. 95 (2009) 053303.

DOI: 10.1063/1.3196763

Google Scholar

[19] F. Cheng, G.J. Fang, X. Fan, H.H. Huang, Q. Zheng, P.L. Qin, H.W. Lei, Y.F. Li, Enhancing the performance of P3HT: ICBA based polymer solar cells using LiF as electron collecting buffer layer and UV–ozone treated MoO3 as hole collecting buffer layer, Sol. Energy Mat. Sol. Cells 110 (2013).

DOI: 10.1016/j.solmat.2012.12.006

Google Scholar

[20] M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu, Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3, Adv. Funct. Mater. 23 (2013) 215-226.

DOI: 10.1002/adfm.201200993

Google Scholar

[21] K.H. Wong, K. Ananthanarayanan, J. Luther, P. Balaya, Origin of Hole Selectivity and the Role of Defects in Low-Temperature Solution-Processed Molybdenum Oxide Interfacial Layer for Organic Solar Cells, J. Phys. Chem. C 116 (2012) 16346-16351.

DOI: 10.1021/jp303679y

Google Scholar

[22] X. -B. Shi, M. -F. Xu, D. -Y. Zhou, Z. -K. Wang, L. -S. Liao, Improved cation valence state in molybdenum oxides by ultraviolet-ozone treatments and its applications in organic light-emitting diodes, Appl. Phys. Lett. 102 (2013) 233304.

DOI: 10.1063/1.4811267

Google Scholar

[23] X. -C. Jiang, Y. -Q. Li, Y. -H. Deng, Q. -Q. Zhuo, S. -T. Lee, J. -X. Tang, Anode modification of polymer light-emitting diode using graphene oxide interfacial layer: The role of ultraviolet-ozone treatment, Appl. Phys. Lett. 103 (2013) 073305.

DOI: 10.1063/1.4818820

Google Scholar

[24] M.G. Helander, Z.B. Wang, M.T. Greiner, Z.W. Liu, K. Lian, Z.H. Lu, The effect of UV ozone treatment on poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate), Appl. Phys. Lett. 95 (2009) 173302.

DOI: 10.1063/1.3257382

Google Scholar

[25] X. Fan, G.J. Fang, P.L. Qin, N.H. Sun, N.S. Liu, Q. Zheng, F. Cheng, L.Y. Yuan, X.Z. Zhao, Deposition temperature effect of RF magnetron sputtered molybdenum oxide films on the power conversion efficiency of bulk-heterojunction solar cells, J. Phys. D: Appl. Phys. 44 (2011).

DOI: 10.1088/0022-3727/44/4/045101

Google Scholar

[26] M. Dieterle, G. Weinberg, G. Mestl, Raman spectroscopy of molybdenum oxides Part I. Structural characterization of oxygen defects in MoO3- by DR UV/VIS, Raman spectroscopy and X-ray diffraction, Phys. Chem. Chem. Phys. 4 (2002) 812-821.

DOI: 10.1039/b107012f

Google Scholar

[27] T.M. McEvoy, K.J. Stevenson, Spatially Resolved Imaging of Inhomogeneous Charge Transfer Behavior in Polymorphous Molybdenum Oxide. I. Correlation of Localized Structural, Electronic, and Chemical Properties Using Conductive Probe Atomic Force Microscopy and Raman Microprobe Spectroscopy, Langmuir 21 (2005).

DOI: 10.1021/la047276v

Google Scholar

[28] M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu, Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies, Adv. Funct. Mater. 22 (2012) 4557-4568.

DOI: 10.1002/adfm.201200615

Google Scholar

[29] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, Handbook of X-ray photoelectron spectroscopy, in: G.E. Muilenberg (Ed. ), Perkin Elmer Corporation, Eden Prairie, 1979, pp.104-105.

Google Scholar

[30] D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell, D.S.L. Law, Theoretical and Experimental Study of the Electronic Structures of MoO3 and MoO2, J. Phys. Chem. C 114 (2010) 4636-4645.

DOI: 10.1021/jp9093172

Google Scholar

[31] V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides, in, Cambridge University Press, Cambridge, (1994).

Google Scholar

[32] M.A. Lampert, P. Mark, Current Injection in Solids, in, Academic, New York, 1970, p.15–55.

Google Scholar

[33] C. Brabec, V. Dyakonov, U. Scherf, Organic Photovoltaics: materials, device physics, and manufacturing technologies, in, Wiley-VCH, Weinheim, (2008).

Google Scholar

[34] M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency, Adv. Mater. 18 (2006) 789-794.

DOI: 10.1002/adma.200501717

Google Scholar

[35] G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Design rules for donors in bulk-heterojunction tandem solar cells-towards 15 % energy-conversion efficiency, Adv. Mater. 20 (2008) 579-583.

DOI: 10.1002/adma.200702337

Google Scholar

[36] W.U. Huynh, J.J. Dittmer, N. Teclemariam, D.J. Milliron, A.P. Alivisatos, K.W.J. Barnham, Charge transport in hybrid nanorod-polymer composite photovoltaic cells, Phys. Rev. B 67 (2003) 115326.

DOI: 10.1103/physrevb.67.115326

Google Scholar

[37] J.D. Servaites, S. Yeganeh, T.J. Marks, M.A. Ratner, Efficiency enhancement in organic photovoltaic cells: Consequences of optimizing series resistance, Adv. Funct. Mater. 20 (2010) 97-104.

DOI: 10.1002/adfm.200901107

Google Scholar

[38] X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, J.T.L. Navarrete, S. Li, J. Strzalka, L.X. Chen, R.P.H. Chang, A. Facchetti, T.J. Marks, Polymer solar cells with enhanced fill factors, Nat. Photon. (2013) 825–833.

DOI: 10.1038/nphoton.2013.207

Google Scholar