Electroless CoMoB Diffusion Barrier Layer for ULSI-Cu Metallization

Article Preview

Abstract:

CoMoB film was prepared on Si substrate via electroless deposition as the diffusion barrier for ULSI-Cu metallization. Annealing experiments of CoMoB(30nm) film and CoMoB(10nm)/Cu (40nm)/CoMoB(30nm)/SiO2/Si multi-films were carried out in the temperature range from 400C to 700C. Failure temperature and mechanism of Cu diffusion in CoMoB film were discussed. The composition, sheet resistance and morphology of the film were investigated by X-Ray Diffractometer (XRD), Four Point Probe (FPP) and Atomic Force Microscopy (AFM), respectively. It can be concluded that the failure temperature of CoMoB film is 600C. The main reason of failure is that a large number of Cu particles passed through CoMoB grain boundary and reacted with Si substrate to generate Cu4Si with high resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-96

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Osaka, M. Yoshino, New formation process of plating thin films on several substrates by means of self-assembled monolayer (SAM) process, J. Electrochimica Acta. 53 (2007) 271-277.

DOI: 10.1016/j.electacta.2007.04.004

Google Scholar

[2] A. Kumara, M. Kumar, D. Kumar, Effect of composition on electroless deposited Ni-Co-P alloy thin films as a diffusion barrier for copper metallization, J. Applied Surface Science. 258 (2012) 7962-7967.

DOI: 10.1016/j.apsusc.2012.04.145

Google Scholar

[3] A. Kumar, M. Kumar, D. Kumar, Deposition and characterization of electroless Ni-Co-P alloy for diffusion barrier applications, J. Microelectronic Engineering. 87 (2010) 387-390.

DOI: 10.1016/j.mee.2009.06.034

Google Scholar

[4] J. S. Fang, J. H. Lin, B.Y. Chen, Low resistivity Ru-Ta-C barriers for Cu interconnects, Journal of Electronic Materials 41 (2012) 138-143.

DOI: 10.1007/s11664-011-1797-4

Google Scholar

[5] H.J. Luo, B.N. Song, Y.H. Liu, Electroless Ni-P plating on Mg-Li alloy by two-step method, J. Transactions of Nonferrous Metals Society of China. 21 (2011) 2225-2230.

DOI: 10.1016/s1003-6326(11)60999-0

Google Scholar

[6] M.L. Wang, Z.G. Yang, C. Zhang, Growing process and reaction mechanism of electroless Ni-Mo-P film on SiO2 substrate, J. Trans. Nonferrous Met. Soc. China. 23 (2013) 3629-3633.

DOI: 10.1016/s1003-6326(13)62910-6

Google Scholar

[7] T.K. Tsai, S.S. Wu, C.S. Hsu, Effect of phosphorus on the copper diffusion barrier properties of electroless CoWP films, J. Thin Solid Films. 519 (2011) 4958–4962.

DOI: 10.1016/j.tsf.2011.01.061

Google Scholar

[8] R. Tarozaite, Z. Sukackiene, A. Sudavicius, Application of glycine containing solutions for electroless deposition of Co-P and Co-W-P films and their behavior as barrier layers, J. Materials Chemistry and Physics. 117 (2009) 117-124.

DOI: 10.1016/j.matchemphys.2009.05.016

Google Scholar

[9] Z. Tokei, Y.L. Li, Reliability challenges for copper low-k dielectrics and copper barrier, J. Microelectronics Reliability. 45 (2005) 1436-1442.

DOI: 10.1016/j.microrel.2005.07.040

Google Scholar

[10] S.W. Wei: Study of plating Cu on fine groove (2003).

Google Scholar

[11] M. Yoshino, Y. Nonaka, J. Sasano, All-wet fabrication process for ULSI interconnect technologies, J. Electrochimica Acta. 51 (2005) 916-920.

DOI: 10.1016/j.electacta.2005.04.069

Google Scholar

[12] Y. Shacham-Diamand, Y. Sverdlov, N. Petrov, Electroless deposition of NiMoP films using alkali-free chemicals for capping layers of copper interconnections, J. Korean Journal of Chemical Engineering 29 (2012) 1259-1265.

DOI: 10.1007/s11814-011-0301-4

Google Scholar

[13] S.M.S.I. Dulal, C.B. Shin, J.Y. Sung, Electrodeposition of CoWP film II, Effect of electrolyte concentration, Journal of Applied Electrochemistry. 38 (2008) 83-91.

DOI: 10.1007/s10800-007-9404-3

Google Scholar

[14] Y. Sverdlov, V. Bogush, Y. Shacham, Microtructure and material properties of electroless CoWP films obtained from sulfamate solution, J. Microelectronic Engineering. 83 (2006) 2243-2247.

DOI: 10.1016/j.mee.2006.10.012

Google Scholar

[15] Z.L. Wang, Z.J. Liu, H.Y. Jang, Electrolessly deposited diffusion barriers for microlectronics, J. Electrochemistry. 12 (1998) 125-133.

Google Scholar

[16] N. Osaka Takano, T. Kurokawa, Fabrication of Electroless NiReP Barrier Layer on SiO2 Witllout Sputtered Seed Layer, J. Solid State Letter. 5 (2002) C7~C10.

DOI: 10.1149/1.1421747

Google Scholar

[17] N. Osaka Takano, T. Kurokawa, Electroless Nickel Ternary Alloy deposition on SiO2 for application to diffusion barrier layer in copper inter-connect technology, J. Electrochem Soc. 149 (2002) C573~C578.

DOI: 10.1149/1.1512669

Google Scholar

[18] M. Hasegawa, Y. Negishi, T. Nakanishi, Effects of additives on copper electrodeposition in submicrometer trenches, J. Electrochem Soc, 152 (2005) C221.

DOI: 10.1149/1.1867672

Google Scholar

[19] Y. Shacham-Diamand, Y. Sverdlov, N. Petrov, Electroless deposition of thin film Cobalt-Tungsten—Phosphorus layers using tungsten phosphoric acid(H3[P(W3O10)4]) for ULSI and MEMS applications, J. Electrochem Soc. 148 (2001) C162~C167.

DOI: 10.1149/1.1346605

Google Scholar

[20] T.K. Tsai, S.S. Wu, C.S. Hsu, Effect of phosphorus on the copper diffusion barrier properties of electroless CoWP films, J. Thin Solid Films. 519 (2011) 4958-4962.

DOI: 10.1016/j.tsf.2011.01.061

Google Scholar