An Efficient Simple Hydrothermal Method to Synthesis FeS2 Microspheres and their Optical Property

Article Preview

Abstract:

Pyrite (FeS2) is an important semiconductor material which shows various excellent optical and electrical properties and extensive applied prospect as a new-type, photoelectrical functional materials. In this study, a low cost and efficient simple hydrothermal two-step synthetic method was given to obtain FeS2 microspheres with 2-3 μm in diameter. The obtained products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet and visible spectrophotometer (UV-Vis). XRD showed that the synthetic sample consisted of two crystal structures of FeS2, pyrite and marcasite. SEM observation indicated that FeS2 microspheres were well crystallized and had good uniformity. UV-Vis spectrum had a strong optical absorption in the region of 200-400 nm wave length. The reaction temperature had an impact on the size of FeS2 microspheres. A possible mechanism for the size of the FeS2 microspheres generated at high temperature is smaller than that at low temperature is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-77

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.S. Selinsky, Q. Ding, M.S. Faber, J.C. Wright, S. Jin, Quantum dot nanoscale heterostructures for solar energy conversion, Chem. Soc. Rev. 42 (2013) 2963-2985.

DOI: 10.1039/c2cs35374a

Google Scholar

[2] D. Rickard, J.W. Morse, Acid volatile sulfide (AVS), Mar. Chem. 97 (2005) 141–197.

DOI: 10.1016/j.marchem.2005.08.004

Google Scholar

[3] M. Wang, C. Xing, K. Cao, L. Zhang, J. Liu, L. Meng, Template-directed synthesis of pyrite (FeS2) nanorod arrays with an enhanced photoresponse, J. Mater. Chem. A 2 (2014) 9496–9505.

DOI: 10.1039/c4ta00759j

Google Scholar

[4] A. Kirkeminde, R. Scott, S. Ren, All inorganic iron pyrite nano-heterojunction solar cells, Nanoscale 4 (2012) 7649-7654.

DOI: 10.1039/c2nr32097e

Google Scholar

[5] H.A. Macpherson and C.R. Stoldt, Iron pyrite nanocubes: size and shape considerations for photovoltaic application, Acs Nano 6 (2012) 8940-8949.

DOI: 10.1021/nn3029502

Google Scholar

[6] S.C. Hsiao, C.M. Hsu, S.Y. Chen, Y.H. Perng, Y.L. Chueh, L.J. Chen, Facile synthesis and characterization of high temperature phase FeS2 pyrite nanocrystals, Mater. Lett. 75 (2012) 152-154.

DOI: 10.1016/j.matlet.2012.02.033

Google Scholar

[7] D.R. Cummins, H.B. Russell, J.B. Jasinski, M. Menon, M.K. Sunkara, Iron Sulfide (FeS) nanotubes using sulfurization of hematite nanowires, Nano letters 13 (2013) 2423-2430.

DOI: 10.1021/nl400325s

Google Scholar

[8] A.M. Golsheikh, N.M. Huang, H.N. Lim, C.H. Chia, I. Harrison, M.R. Muhamad, One-pot hydrothermal synthesis and characterization of FeS2 (pyrite)/graphene nanocomposite, Chem. Eng. J. 218 (2013) 276-284.

DOI: 10.1016/j.cej.2012.09.082

Google Scholar

[9] R. Wu, Y.F. Zheng, X.G. Zhang, Y.F. Sun, J.B. Xu, J.K. Jian, Hydrothermal synthesis and crystal structure of pyrite, J. Cry. Grow. 266 (2004) 523–527.

DOI: 10.1016/j.jcrysgro.2004.02.020

Google Scholar

[10] D.W. Wang, Q.H. Wang, T.M. Wang, Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method, Cryst. Eng. Comm. 12 (2010) 755–761.

DOI: 10.1039/b917941k

Google Scholar

[11] J. Xu, H. Xue, X. Yang, H. Wei, W. Li, Z. Li, W. Zhang, C. Lee, Synthesis of Honeycomb-like Mesoporous Pyrite FeS2 Microspheres as Efficient Counter Electrode in Quantum Dots Sensitized Solar Cells , Small 10(2014).

DOI: 10.1002/smll.201401102

Google Scholar

[12] M. AlamKhan, M.O. Manasreh, Y. Kang, Characterization and optoelectronic properties of iron pyrite nanohusks, Mater. Lett. 126 (2014)181–184.

DOI: 10.1016/j.matlet.2014.04.060

Google Scholar

[13] L. Zhu, B.J. Richardson, Q. Yu, Controlled colloidal synthesis of iron pyrite FeS2 nanorods and quasi-cubic nanocrystal agglomerates, Nanoscale 6 (2014) 1029–1037.

DOI: 10.1039/c3nr04979e

Google Scholar

[14] D.W. Wang, Q.H. Wang, T.M. Wang, Shape controlled growth of pyrite FeS2 crystallites via a polymer-assisted hydrothermal route, Cryst. Eng. Comm. 12 (2010) 3797-3805.

DOI: 10.1039/c004266h

Google Scholar

[15] R.A. Berner, The synthesis of framboidal pyrite, Econ. Geol. 64 (1969) 383-384.

Google Scholar

[16] B. Kříbek, The origin of framboidal pyrite as a surface effect of sulphur grains, Mineralium Deposita 10 (1975) 389-396.

DOI: 10.1007/bf00207896

Google Scholar

[17] C. Wadia, Y. Wu, S. Gul, S.K. Volkman, J.H. Guo, A.P. Alivisatos, Surfactant-assisted hydrothermal synthesis of single phase pyrite FeS2 nanocrystals, Chem. Mat. 21 (2009) 2568-2570.

DOI: 10.1021/cm901273v

Google Scholar

[18] A. Kirkeminde, P. Gingrich, M.G. Gong, H.Z. Cui, S.Q. Ren, Iron sulfide ink for the growth of pyrite crystals, Nanotechnology 25 (2014) 205603.

DOI: 10.1088/0957-4484/25/20/205603

Google Scholar

[19] G.W. Luther, Pyrite synthesis via polysulfide compounds, Geochim. Cosmochim. Ac. 55 (1991) 2839-2849.

DOI: 10.1016/0016-7037(91)90449-f

Google Scholar

[20] E.J. Kim and B. Batchelor, Synthesis and characterization of pyrite (FeS2) using microwave irradiation, Mater. Res. Bull. 44 (2009) 1553-1558.

DOI: 10.1016/j.materresbull.2009.02.006

Google Scholar