[1]
W. Xu, A.J. Janocha, R.A. Leahy, R. Klatte, D. Dudzinski, L.A. Mavrakis, S.A.A. Comhair, M.E. Lauer, C.U. Cotton, S.C. Erzurum, A novel method for pulmonary research: Assessment of bioenergetic function at the air–liquid interface, Redox Biology, 2 (2014).
DOI: 10.1016/j.redox.2014.01.004
Google Scholar
[2]
D. He, D. Wu, J. Gao, X. Wu, X. Zeng, W. Ding, Flower-like CoS with nanostructures as a new cathode-active material for rechargeable magnesium batteries, Journal of Power Sources, 294 (2015) 643-649.
DOI: 10.1016/j.jpowsour.2015.06.127
Google Scholar
[3]
R. Zhang, X. Yu, K. -W. Nam, C. Ling, T.S. Arthur, W. Song, A.M. Knapp, S.N. Ehrlich, X. -Q. Yang, M. Matsui, α-MnO2 as a cathode material for rechargeable Mg batteries, Electrochemistry Communications, 23 (2012) 110-113.
DOI: 10.1016/j.elecom.2012.07.021
Google Scholar
[4]
R.D. McKerracher, C. Alegre, V. Baglio, A.S. Aricò, C. Ponce de León, F. Mornaghini, M. Rodlert, F.C. Walsh, A nanostructured bifunctional Pd/C gas-diffusion electrode for metal-air batteries, Electrochimica Acta, 174 (2015) 508-515.
DOI: 10.1016/j.electacta.2015.06.001
Google Scholar
[5]
M. Matsui, Study on electrochemically deposited Mg metal, Journal of Power Sources, 196 (2011) 7048-7055.
DOI: 10.1016/j.jpowsour.2010.11.141
Google Scholar
[6]
L. Jöerissen, SECONDARY BATTERIES – METAL-AIR SYSTEMS | Bifunctional Oxygen Electrodes, in: J. Garche (Ed. ) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp.356-371.
DOI: 10.1016/b978-044452745-5.00920-5
Google Scholar
[7]
A. Garsuch, A. Panchenko, C. Querner, A. Karpov, S. Huber, R. Oesten, FeAgMo2O8 — A novel oxygen evolution catalyst material for alkaline metal–air batteries, Electrochemistry Communications, 12 (2010) 1642-1645.
DOI: 10.1016/j.elecom.2010.09.016
Google Scholar
[8]
L. Demarconnay, C. Coutanceau, J.M. Léger, Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts—effect of the presence of methanol, Electrochimica Acta, 49 (2004) 4513-4521.
DOI: 10.1016/j.electacta.2004.05.009
Google Scholar
[9]
S.L. Gojković, S. Gupta, R.F. Savinell, Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part II. Kinetics of oxygen reduction, Journal of Electroanalytical Chemistry, 462 (1999).
DOI: 10.1016/s0022-0728(98)00390-8
Google Scholar
[10]
M.L. Calegaro, F.H.B. Lima, E.A. Ticianelli, Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions, Journal of Power Sources, 158 (2006) 735-739.
DOI: 10.1016/j.jpowsour.2005.08.048
Google Scholar
[11]
J. Yuan, J. Wang, Y. She, J. Hu, P. Tao, F. Lv, Z. Lu, Y. Gu, BiOCl micro-assembles consisting of ultrafine nanoplates: A high performance electro-catalyst for air electrode of Al–air batteries, Journal of Power Sources, 263 (2014) 37-45.
DOI: 10.1016/j.jpowsour.2014.04.022
Google Scholar
[12]
C.S. Park, K.S. Kim, Y.J. Park, Carbon-sphere/Co3O4 nanocomposite catalysts for effective air electrode in Li/air batteries, Journal of Power Sources, 244 (2013) 72-79.
DOI: 10.1016/j.jpowsour.2013.03.153
Google Scholar
[13]
D. Thiele, A. Züttel, Electrochemical characterisation of air electrodes based on La0. 6Sr0. 4CoO3 and carbon nanotubes, Journal of Power Sources, 183 (2008) 590-594.
DOI: 10.1016/j.jpowsour.2008.05.042
Google Scholar
[14]
J. Liu, Q. Tang, B. He, L. Yu, Cost-effective, transparent iron selenide nanoporous alloy counter electrode for bifacial dye-sensitized solar cell, Journal of Power Sources, 282 (2015) 79-86.
DOI: 10.1016/j.jpowsour.2015.02.045
Google Scholar
[15]
Q. Wang, H. Dong, H. Yu, Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte, Journal of Power Sources, 271 (2014) 278-284.
DOI: 10.1016/j.jpowsour.2014.08.017
Google Scholar
[16]
V.A. Paganin, C.L.F. Oliveira, E.A. Ticianelli, T.E. Springer, E.R. Gonzalez, Modelisticinterpretation of the impedance response of a polymer electrolyte fuel cell1, Electrochimica Acta, 43 (1998) 3761-3766.
DOI: 10.1016/s0013-4686(98)00135-2
Google Scholar
[17]
H. Huang, W. Zhang, M. Li, Y. Gan, J. Chen, Y. Kuang, Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries, Journal of Colloid and Interface Science, 284 (2005) 593-599.
DOI: 10.1016/j.jcis.2004.10.067
Google Scholar