Effect of Na2SO4 on the Performance of Mg-Air Battery

Article Preview

Abstract:

In this study, an Mg-air battery based on air cathode with different content of Na2SO4 was prepared to study the effect of Na2SO4 on the performance of Mg-air battery. The electrochemical performance of the air cathode was studied by potentiodynamic polarization and electrochemical impedance spectroscopy. The results indicated that the electrochemical activity of the electrode enhanced with the increasing Na2SO4. The discharge performance of the battery was investigated by constant-current discharge test, and the results showed that the discharge potential of the battery also improved with the increasing of Na2SO4. However, the forming of air cathode became difficult gradually with the increasing content of Na2SO4. What is worse, the oversize pore produced in the moisture barrier when the content of Na2SO4 was too high and the moisture barrier would lose resistance to water. So the content of Na2SO4 should not be too high.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-49

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Xu, A.J. Janocha, R.A. Leahy, R. Klatte, D. Dudzinski, L.A. Mavrakis, S.A.A. Comhair, M.E. Lauer, C.U. Cotton, S.C. Erzurum, A novel method for pulmonary research: Assessment of bioenergetic function at the air–liquid interface, Redox Biology, 2 (2014).

DOI: 10.1016/j.redox.2014.01.004

Google Scholar

[2] D. He, D. Wu, J. Gao, X. Wu, X. Zeng, W. Ding, Flower-like CoS with nanostructures as a new cathode-active material for rechargeable magnesium batteries, Journal of Power Sources, 294 (2015) 643-649.

DOI: 10.1016/j.jpowsour.2015.06.127

Google Scholar

[3] R. Zhang, X. Yu, K. -W. Nam, C. Ling, T.S. Arthur, W. Song, A.M. Knapp, S.N. Ehrlich, X. -Q. Yang, M. Matsui, α-MnO2 as a cathode material for rechargeable Mg batteries, Electrochemistry Communications, 23 (2012) 110-113.

DOI: 10.1016/j.elecom.2012.07.021

Google Scholar

[4] R.D. McKerracher, C. Alegre, V. Baglio, A.S. Aricò, C. Ponce de León, F. Mornaghini, M. Rodlert, F.C. Walsh, A nanostructured bifunctional Pd/C gas-diffusion electrode for metal-air batteries, Electrochimica Acta, 174 (2015) 508-515.

DOI: 10.1016/j.electacta.2015.06.001

Google Scholar

[5] M. Matsui, Study on electrochemically deposited Mg metal, Journal of Power Sources, 196 (2011) 7048-7055.

DOI: 10.1016/j.jpowsour.2010.11.141

Google Scholar

[6] L. Jöerissen, SECONDARY BATTERIES – METAL-AIR SYSTEMS | Bifunctional Oxygen Electrodes, in: J. Garche (Ed. ) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp.356-371.

DOI: 10.1016/b978-044452745-5.00920-5

Google Scholar

[7] A. Garsuch, A. Panchenko, C. Querner, A. Karpov, S. Huber, R. Oesten, FeAgMo2O8 — A novel oxygen evolution catalyst material for alkaline metal–air batteries, Electrochemistry Communications, 12 (2010) 1642-1645.

DOI: 10.1016/j.elecom.2010.09.016

Google Scholar

[8] L. Demarconnay, C. Coutanceau, J.M. Léger, Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts—effect of the presence of methanol, Electrochimica Acta, 49 (2004) 4513-4521.

DOI: 10.1016/j.electacta.2004.05.009

Google Scholar

[9] S.L. Gojković, S. Gupta, R.F. Savinell, Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part II. Kinetics of oxygen reduction, Journal of Electroanalytical Chemistry, 462 (1999).

DOI: 10.1016/s0022-0728(98)00390-8

Google Scholar

[10] M.L. Calegaro, F.H.B. Lima, E.A. Ticianelli, Oxygen reduction reaction on nanosized manganese oxide particles dispersed on carbon in alkaline solutions, Journal of Power Sources, 158 (2006) 735-739.

DOI: 10.1016/j.jpowsour.2005.08.048

Google Scholar

[11] J. Yuan, J. Wang, Y. She, J. Hu, P. Tao, F. Lv, Z. Lu, Y. Gu, BiOCl micro-assembles consisting of ultrafine nanoplates: A high performance electro-catalyst for air electrode of Al–air batteries, Journal of Power Sources, 263 (2014) 37-45.

DOI: 10.1016/j.jpowsour.2014.04.022

Google Scholar

[12] C.S. Park, K.S. Kim, Y.J. Park, Carbon-sphere/Co3O4 nanocomposite catalysts for effective air electrode in Li/air batteries, Journal of Power Sources, 244 (2013) 72-79.

DOI: 10.1016/j.jpowsour.2013.03.153

Google Scholar

[13] D. Thiele, A. Züttel, Electrochemical characterisation of air electrodes based on La0. 6Sr0. 4CoO3 and carbon nanotubes, Journal of Power Sources, 183 (2008) 590-594.

DOI: 10.1016/j.jpowsour.2008.05.042

Google Scholar

[14] J. Liu, Q. Tang, B. He, L. Yu, Cost-effective, transparent iron selenide nanoporous alloy counter electrode for bifacial dye-sensitized solar cell, Journal of Power Sources, 282 (2015) 79-86.

DOI: 10.1016/j.jpowsour.2015.02.045

Google Scholar

[15] Q. Wang, H. Dong, H. Yu, Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte, Journal of Power Sources, 271 (2014) 278-284.

DOI: 10.1016/j.jpowsour.2014.08.017

Google Scholar

[16] V.A. Paganin, C.L.F. Oliveira, E.A. Ticianelli, T.E. Springer, E.R. Gonzalez, Modelisticinterpretation of the impedance response of a polymer electrolyte fuel cell1, Electrochimica Acta, 43 (1998) 3761-3766.

DOI: 10.1016/s0013-4686(98)00135-2

Google Scholar

[17] H. Huang, W. Zhang, M. Li, Y. Gan, J. Chen, Y. Kuang, Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries, Journal of Colloid and Interface Science, 284 (2005) 593-599.

DOI: 10.1016/j.jcis.2004.10.067

Google Scholar