[1]
E. Oró, A. d. Gracia, A. Castell, M.M. Farid, L.F. Cabeza, Review on phase change materials (PCMs) for cold thermal energy storage applications, Appl Energy 99 (2012) 513-533.
DOI: 10.1016/j.apenergy.2012.03.058
Google Scholar
[2]
M.M. Kenisarin, K.M. Kenisarina, Form-stable phase change materials for thermal energy storage, Renew Sust Energ Rev 16 (2012) 1999-(2040).
DOI: 10.1016/j.rser.2012.01.015
Google Scholar
[3]
K. Pielichowska, K. Pielichowski, Phase change materials for thermal energy storage, Prog Mater Sci 65 (2014) 67-123.
DOI: 10.1016/j.pmatsci.2014.03.005
Google Scholar
[4]
R.K. Sharma, P. Ganesan, V.V. Tyagi, H.S. C Metselaar, S.C. Sandaran, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage, Energy Convers Manage 95 (2015) 193-228.
DOI: 10.1016/j.enconman.2015.01.084
Google Scholar
[5]
B.W. Xu, Z.J. Li, Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage, Appl Energy 105 (2013) 229-237.
DOI: 10.1016/j.apenergy.2013.01.005
Google Scholar
[6]
S. Karaman, A. Karaipekli, A. Sarı, A. Bicer, Polyethylen e glycol (PEG)/diatomite composite as a novel form -stable phase change material for thermal energy storage, Sol Energy Mater Sol Cells 95 (2011) 1647-1653.
DOI: 10.1016/j.solmat.2011.01.022
Google Scholar
[7]
T.T. Qian, J.H. Li , X. Min, Y. Deng, W.M. Guan, H.W. Ma, Polyethylene glycol/mesoporous calcium silicate shape -stabilized composite phase change material: Preparation, characterization, and adjustable thermal property, Energy 82 (2015) 333-340.
DOI: 10.1016/j.energy.2015.01.043
Google Scholar
[8]
M. Xiao, B. Feng, K. Gong, Preparation and performance of shape stabilizes phase change thermal storage materials with high thermal conductivity, Energy Convers Manage 43 (2002) 103–108.
DOI: 10.1016/s0196-8904(01)00010-3
Google Scholar
[9]
T.T. Qian, J.H. Li , X. Min, Y. Deng, W.M. Guan, N. Ning, Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material, Energy Convers Manage 98 (2015) 34-35.
DOI: 10.1016/j.enconman.2015.03.071
Google Scholar
[10]
A. Sarı, A. Karaipekli, Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage, Mater Chem Phys 109 (2008) 459–464.
DOI: 10.1016/j.matchemphys.2007.12.016
Google Scholar
[11]
O. Chung, S.G. Jeong, S. Kim, Preparation of energy effi cient paraffi nic PCMs/expanded vermiculite and perlite composites for energy saving in buildings, Sol Energy Mater Sol Cells 137 (2015) 107-112.
DOI: 10.1016/j.solmat.2014.11.001
Google Scholar
[12]
W.M. Guan, J.H. Li, T.T. Qian, X. Wang, Y. Deng, Preparation of paraffin/expanded vermiculite with enhanced thermal conductivity by implanting network carbon in vermiculite layers, Chem Eng J 277 (2015) 56-63.
DOI: 10.1016/j.cej.2015.04.077
Google Scholar
[13]
A. Shkatulov, J. Ryu, Y. Kato, Y. Aristov, Composite material Mg(OH)2/vermiculite,: A promising new candidate for storage of middle temperature heat, Energy 44 (2012) 1028-1034.
DOI: 10.1016/j.energy.2012.04.045
Google Scholar
[14]
Z.G. Zhang , N. Zhang, J. Peng, X.M. Fang, X.N. Gao, Y.T. Fang, Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material, Appl Energy 91 (2012) 426-431.
DOI: 10.1016/j.apenergy.2011.10.014
Google Scholar
[15]
J.Y. Yu, J. He, C.Q. Ya, Preparation of phenolic resin/organized expanded vermiculite nanocomposite and its application in brake pad, J Appl Polym Sci 119 (2011) 275–280.
DOI: 10.1002/app.32557
Google Scholar
[16]
A.S. Gray, C. Uher, Thermal conductivity of mica at low temperatures, J Mater Sci 12 (1977) 959-965.
DOI: 10.1007/bf00540978
Google Scholar
[17]
A. Sarı, A. Bicer, Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form -stable PCMs, Sol. Energy Mater. Sol. Cells 101 (2012) 114-122.
DOI: 10.1016/j.solmat.2012.02.026
Google Scholar
[18]
Z.M. Sun, Y.Z. Zhang, S.L. Zheng, Y. Park, R.L. Frost, Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials. Thermochim. Acta 558 (2013) 16-21.
DOI: 10.1016/j.tca.2013.02.005
Google Scholar
[19]
S.K. Song, L.J. Dong, Y. Zhang, S. Chen, Q. Li, Y. Guo, S.F. Deng, S. Si, C.X. Xiong, Lauric acid/intercalated kaolinite a s form -stable phase change material for thermal energy storage, Energy 76 (2014) 385-389.
DOI: 10.1016/j.energy.2014.08.042
Google Scholar