Polyethylene Glycol/Expanded Vermiculite Shape-Stabilized Composite Phase Change Materials for Thermal Energy Storage

Article Preview

Abstract:

Polyethylene glycol (PEG)/ expanded vermiculite (EVMT) shape-stabilized composite phase change material (ss-CPCM) was prepared by a facile vacuum impregnation method. The maximum mass percentage for PEG retained in ss-CPCM was 75.1 wt.% due to specific non-uniform flat layers pore structure of EVMT. The scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR) analysis results indicated that the melted PEG was adsorbed on the surface and completely dispersed into the pores of EVMT and no chemical changes took place during the heating and cooling processes. X-ray diffraction (XRD) results showed that the crystal structure of PEG was not destroyed after impregnation whereas the crystallization process of PEG was greatly restrained. Differential scanning calorimetry (DSC) results indicated that ss-CPCM melted at 57.61°C with a latent heat of 103.1 J/g and solidified at 33.19°C with a latent heat of 88.29 J/g. In addition, the thermal conductivity of ss-CPCM reached 0.418W/m K. The ss-CPCM can be considered as promising candidate materials for building applications due to their suitable phase change temperature, large latent heat and excellent chemical compatibility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-45

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Oró, A. d. Gracia, A. Castell, M.M. Farid, L.F. Cabeza, Review on phase change materials (PCMs) for cold thermal energy storage applications, Appl Energy 99 (2012) 513-533.

DOI: 10.1016/j.apenergy.2012.03.058

Google Scholar

[2] M.M. Kenisarin, K.M. Kenisarina, Form-stable phase change materials for thermal energy storage, Renew Sust Energ Rev 16 (2012) 1999-(2040).

DOI: 10.1016/j.rser.2012.01.015

Google Scholar

[3] K. Pielichowska, K. Pielichowski, Phase change materials for thermal energy storage, Prog Mater Sci 65 (2014) 67-123.

DOI: 10.1016/j.pmatsci.2014.03.005

Google Scholar

[4] R.K. Sharma, P. Ganesan, V.V. Tyagi, H.S. C Metselaar, S.C. Sandaran, Developments in organic solid–liquid phase change materials and their applications in thermal energy storage, Energy Convers Manage 95 (2015) 193-228.

DOI: 10.1016/j.enconman.2015.01.084

Google Scholar

[5] B.W. Xu, Z.J. Li, Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage, Appl Energy 105 (2013) 229-237.

DOI: 10.1016/j.apenergy.2013.01.005

Google Scholar

[6] S. Karaman, A. Karaipekli, A. Sarı, A. Bicer, Polyethylen e glycol (PEG)/diatomite composite as a novel form -stable phase change material for thermal energy storage, Sol Energy Mater Sol Cells 95 (2011) 1647-1653.

DOI: 10.1016/j.solmat.2011.01.022

Google Scholar

[7] T.T. Qian, J.H. Li , X. Min, Y. Deng, W.M. Guan, H.W. Ma, Polyethylene glycol/mesoporous calcium silicate shape -stabilized composite phase change material: Preparation, characterization, and adjustable thermal property, Energy 82 (2015) 333-340.

DOI: 10.1016/j.energy.2015.01.043

Google Scholar

[8] M. Xiao, B. Feng, K. Gong, Preparation and performance of shape stabilizes phase change thermal storage materials with high thermal conductivity, Energy Convers Manage 43 (2002) 103–108.

DOI: 10.1016/s0196-8904(01)00010-3

Google Scholar

[9] T.T. Qian, J.H. Li , X. Min, Y. Deng, W.M. Guan, N. Ning, Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material, Energy Convers Manage 98 (2015) 34-35.

DOI: 10.1016/j.enconman.2015.03.071

Google Scholar

[10] A. Sarı, A. Karaipekli, Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage, Mater Chem Phys 109 (2008) 459–464.

DOI: 10.1016/j.matchemphys.2007.12.016

Google Scholar

[11] O. Chung, S.G. Jeong, S. Kim, Preparation of energy effi cient paraffi nic PCMs/expanded vermiculite and perlite composites for energy saving in buildings, Sol Energy Mater Sol Cells 137 (2015) 107-112.

DOI: 10.1016/j.solmat.2014.11.001

Google Scholar

[12] W.M. Guan, J.H. Li, T.T. Qian, X. Wang, Y. Deng, Preparation of paraffin/expanded vermiculite with enhanced thermal conductivity by implanting network carbon in vermiculite layers, Chem Eng J 277 (2015) 56-63.

DOI: 10.1016/j.cej.2015.04.077

Google Scholar

[13] A. Shkatulov, J. Ryu, Y. Kato, Y. Aristov, Composite material Mg(OH)2/vermiculite,: A promising new candidate for storage of middle temperature heat, Energy 44 (2012) 1028-1034.

DOI: 10.1016/j.energy.2012.04.045

Google Scholar

[14] Z.G. Zhang , N. Zhang, J. Peng, X.M. Fang, X.N. Gao, Y.T. Fang, Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material, Appl Energy 91 (2012) 426-431.

DOI: 10.1016/j.apenergy.2011.10.014

Google Scholar

[15] J.Y. Yu, J. He, C.Q. Ya, Preparation of phenolic resin/organized expanded vermiculite nanocomposite and its application in brake pad, J Appl Polym Sci 119 (2011) 275–280.

DOI: 10.1002/app.32557

Google Scholar

[16] A.S. Gray, C. Uher, Thermal conductivity of mica at low temperatures, J Mater Sci 12 (1977) 959-965.

DOI: 10.1007/bf00540978

Google Scholar

[17] A. Sarı, A. Bicer, Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form -stable PCMs, Sol. Energy Mater. Sol. Cells 101 (2012) 114-122.

DOI: 10.1016/j.solmat.2012.02.026

Google Scholar

[18] Z.M. Sun, Y.Z. Zhang, S.L. Zheng, Y. Park, R.L. Frost, Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials. Thermochim. Acta 558 (2013) 16-21.

DOI: 10.1016/j.tca.2013.02.005

Google Scholar

[19] S.K. Song, L.J. Dong, Y. Zhang, S. Chen, Q. Li, Y. Guo, S.F. Deng, S. Si, C.X. Xiong, Lauric acid/intercalated kaolinite a s form -stable phase change material for thermal energy storage, Energy 76 (2014) 385-389.

DOI: 10.1016/j.energy.2014.08.042

Google Scholar