Structure of LaNi3.8AlMn0.2D3.2 Compound Studied by Neutron Powder Diffraction

Article Preview

Abstract:

The intermetallic alloy LaNi3.8AlMn0.2 and its deuteride LaNi3.8AlMn0.2D3.2 were studied by neutron powder diffraction. The experimental results show that the crystal structure of LaNi3.8AlMn0.2 is CaCu5 type with the hexagonal P6/mmm space group, the substituted Al atoms occupy 2c and 3g sites, while Mn atoms are only located on the 3g sites. For the corresponding deuteride LaNi3.8AlMn0.2D3.2, the P6/mmm space group gives the best refinement, but D atoms enter two interstitial sites 6m and 12n.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-25

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. H. N. van Vucht, F. A. Kuijpers, H. C . A .M. Bruning, Philips Res. Rep. 25(1970) 133-140.

Google Scholar

[2] R. C. Bowman Jr., C. H. Luo, C. C. Ahn, C. K. Witham, B. Fultz, J. Alloys Comp. 217(1995) 185-192.

Google Scholar

[3] P. H. L. Notten, M. Latroche, A. Percheron-Guégan, J. Electrochem. Soc. 146(1999) 3181-3189.

DOI: 10.1149/1.1392452

Google Scholar

[4] G. Bronoel, J. Sarradin, M. Bonnemay, A. Percheron-Guégan, J. C. Achard, L. Schlapbach, Int. J. Hydrogen Energy, 1(1976) 251-254.

DOI: 10.1016/0360-3199(76)90020-3

Google Scholar

[5] H. H. van Mal, K. H. J. Buschow, A. R. Miedema, J. Less-Common Met. 35(1974) 65-76.

Google Scholar

[6] K. H. J. Buschow, P. C. P. Bouten, A.R. Miedema, Rep. Prog. Phys. 45(1982) 937-1040.

Google Scholar

[7] H. Oesterreicher, Appl. Phys. 24(1981) 169-186.

Google Scholar

[8] D. G. Westlake, J. Less-Common Met. 91(1983) 275-292.

Google Scholar

[9] A. Percheron- Guégan, C. Lartigue, J. C. Achard, J. Less-Common Met. 109(1985) 287-309.

DOI: 10.1016/0022-5088(85)90061-x

Google Scholar

[10] J. J. Murray, M. L. Post, J. B. Taylor, J. Less-Common Met. 80(1981) 211-219.

Google Scholar

[11] D. Noreus, L. G. Olsson, P. E. Werner, J. Phys. F. 13(1983) 715-727.

Google Scholar

[12] H. L. Du, W. Y. Zhang, C. S. Wang, J. Z. Han, Y. C. Yang, B. Chen, C. M. Xie, K. Sun, B. S. Zhang, Solid State Commun. 128(2003) 157-161.

Google Scholar

[13] J. H. Li, X. Pan, K. Sun, J. B. Gao, B. S. Zhang, Y. T. Liu, D. F. Chen, Atomic Energy Science and Technology, 44(2010) 22-29.

Google Scholar

[14] T. K. Haltead, N. A. Abood, K. H. J. Buschow, Solid State Commun. 19(1976) 425-428.

Google Scholar

[15] C. Crowder, W. J. James, J. Appl. Phys. 53(1982) 2637-2639.

Google Scholar

[16] A. Percheron- Guégan, C. Lartigue, J. C. Achard, P. Germi, F. Tasset, J. Less-Common Met. 74(1980) 1-12.

DOI: 10.1016/0022-5088(80)90063-6

Google Scholar