[1]
B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging, Nature 458 (2009) 190-193.
DOI: 10.1038/nature07853
Google Scholar
[2]
M. Armand, J.M. Tarascon, Building better batteries, Nature. 451 (2008) 652-657.
DOI: 10.1038/451652a
Google Scholar
[3]
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater. 11 (2012) 19-29.
DOI: 10.1038/nmat3191
Google Scholar
[4]
Y. Zhang, Y. Zhao, A. Yermukhambetova, Z. Bakenov, P. Chen, Ternary sulfur/polyacrylonitrile/Mg0. 6Ni0. 4O composite cathodes for high performance lithium/sulfur batteries, J. Mater. Chem. A. 1 (2013) 295-301.
DOI: 10.1039/c2ta00105e
Google Scholar
[5]
Y. Zhang, Z. Bakenov, Y. Zhao, A. Konarov, T.N.L. Doan, M. Malik, T. Paron, P. Chen, One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries, J. Power Sources. 208 (2012) 1-8.
DOI: 10.1016/j.jpowsour.2012.02.006
Google Scholar
[6]
B. Zhang, X. Qin, G.R. Li, X.P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy Environ. Sci. 3 (2010) 1531-1537.
DOI: 10.1039/c002639e
Google Scholar
[7]
Y. Zhang, Y. Zhao, Z. Bakenov, A simple approach to synthesize nanosized sulfur/graphene oxide materials for high-performance lithium/sulfur batteries, Ionics. 20 (2014) 1047-1050.
DOI: 10.1007/s11581-014-1165-5
Google Scholar
[8]
X.L. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater. 8 (2009) 500-506.
DOI: 10.1038/nmat2460
Google Scholar
[9]
J. Wang, J. Yang, C. Wan, K. Du, J. Xie, N. Xu, Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries, Adv. Funct. Mater. 13 (2003) 487-492.
DOI: 10.1002/adfm.200304284
Google Scholar
[10]
S.Y. Zhang, Y. Zhao, Z. Bakenov, A. Konarov, P. Chen, Preparation of novel network nanostructured sulfur composite cathode with enhanced stable cycle performance, J. Power Sources. 270 (2014) 326-331.
DOI: 10.1016/j.jpowsour.2014.07.096
Google Scholar
[11]
L.L. Qiu, S.C. Zhang, L. Zhang, M.M. Sun, W.K. Wang, Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries, Electrochim. Acta. 55 (2010) 4632-4636.
DOI: 10.1016/j.electacta.2010.03.030
Google Scholar
[12]
L.C. Yin, J.L. Wang, F.Q. Lin, J. Yang, Y. Nuli, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries, Energy Environ. Sci. 5 (2012) 6966-6972.
DOI: 10.1039/c2ee03495f
Google Scholar
[13]
F. Wu, J.Z. Chen, L. Li, T. Zhao, R.J. Chen, Improvement of Rate and Cycle Performence by Rapid Polyaniline Coating of a MWCNT/Sulfur Cathode, J. Phys. Chem. C. 115 (2011) 24411-24417.
DOI: 10.1021/jp207893d
Google Scholar
[14]
Y. Zhang, Y. Zhao, Z. Bakenov, M. Tuiyebayeva, A. Konarov, P. Chen, Synthesis of Hierarchical Porous Sulfur/ Polypyrrole/Multiwalled Carbon Nanotube Composite Cathode for Lithium Batteries, Electrochimi. Acta. 143 (2014) 49-55.
DOI: 10.1016/j.electacta.2014.07.148
Google Scholar
[15]
X. Liang, Z.Y. Wen, Y. Liu, H. Zhang, J. Jin, M.F. Wu, X.W. Wu, A composite of sulfur and polypyrrole-multi walled carbon combinatorial nanotube as cathode for Li/S battery, J. Power Sources. 206 (2012) 409-413.
DOI: 10.1016/j.jpowsour.2012.01.123
Google Scholar
[16]
E. Ruckenstein, Y. Sun, Synthesis of surface conductive polyurethane films, Synth. Met. 75(1995) 7984.
Google Scholar
[17]
M.M. Chehimi, E. Abdeljalil, A study of the degradation and stability of polypyrrole by inverse gas chromatography, X-ray photoelectron spectroscopy, and conductivity measurements, Synth. Met. 145 (2004) 15-22.
DOI: 10.1016/j.synthmet.2004.03.015
Google Scholar
[18]
M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb Carbon: A Review of Graphene, Chem. Rev. 110 (2009) 132-145.
DOI: 10.1021/cr900070d
Google Scholar
[19]
Y. Zhang, Y. Zhao, Z. Bakenov, A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte, Nanoscale Res. Lett. 9 (2014) 137.
DOI: 10.1186/1556-276x-9-137
Google Scholar