In Situ Polymerization Synthesis of Ternary Sulfur/Polypyrrole/Graphene Nanosheet Cathode for Lithium/Sulfur Batteries

Article Preview

Abstract:

A novel sulfur/polypyrrole/graphene nanosheet composite (S/PPy/GNS) was synthesized and investigated as a promising cathode material. This ternary composite was prepared via in situ polymerization of pyrrole monomer with nanosulfur and GNS aqueous suspension followed by heat-treatment. Scanning electronic microscopy observation revealed the formation of a highly porous structure consisting sulfur and polypyrrole coating on the GNS surface. In this composite, GNS works as nanocurrent collector and enhances the conductivity of the composite, and polypyrrole with its high adhesion ability to GNS could act as a binder to connect sulfur and GNS. The resulting S/PPy/GNS composite cathode exhibits high and stable specific discharge capacities of 991 mAh g-1 after 50 cycles at 0.1 C and good rate capability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-13

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging, Nature 458 (2009) 190-193.

DOI: 10.1038/nature07853

Google Scholar

[2] M. Armand, J.M. Tarascon, Building better batteries, Nature. 451 (2008) 652-657.

DOI: 10.1038/451652a

Google Scholar

[3] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater. 11 (2012) 19-29.

DOI: 10.1038/nmat3191

Google Scholar

[4] Y. Zhang, Y. Zhao, A. Yermukhambetova, Z. Bakenov, P. Chen, Ternary sulfur/polyacrylonitrile/Mg0. 6Ni0. 4O composite cathodes for high performance lithium/sulfur batteries, J. Mater. Chem. A. 1 (2013) 295-301.

DOI: 10.1039/c2ta00105e

Google Scholar

[5] Y. Zhang, Z. Bakenov, Y. Zhao, A. Konarov, T.N.L. Doan, M. Malik, T. Paron, P. Chen, One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries, J. Power Sources. 208 (2012) 1-8.

DOI: 10.1016/j.jpowsour.2012.02.006

Google Scholar

[6] B. Zhang, X. Qin, G.R. Li, X.P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy Environ. Sci. 3 (2010) 1531-1537.

DOI: 10.1039/c002639e

Google Scholar

[7] Y. Zhang, Y. Zhao, Z. Bakenov, A simple approach to synthesize nanosized sulfur/graphene oxide materials for high-performance lithium/sulfur batteries, Ionics. 20 (2014) 1047-1050.

DOI: 10.1007/s11581-014-1165-5

Google Scholar

[8] X.L. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater. 8 (2009) 500-506.

DOI: 10.1038/nmat2460

Google Scholar

[9] J. Wang, J. Yang, C. Wan, K. Du, J. Xie, N. Xu, Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries, Adv. Funct. Mater. 13 (2003) 487-492.

DOI: 10.1002/adfm.200304284

Google Scholar

[10] S.Y. Zhang, Y. Zhao, Z. Bakenov, A. Konarov, P. Chen, Preparation of novel network nanostructured sulfur composite cathode with enhanced stable cycle performance, J. Power Sources. 270 (2014) 326-331.

DOI: 10.1016/j.jpowsour.2014.07.096

Google Scholar

[11] L.L. Qiu, S.C. Zhang, L. Zhang, M.M. Sun, W.K. Wang, Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries, Electrochim. Acta. 55 (2010) 4632-4636.

DOI: 10.1016/j.electacta.2010.03.030

Google Scholar

[12] L.C. Yin, J.L. Wang, F.Q. Lin, J. Yang, Y. Nuli, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries, Energy Environ. Sci. 5 (2012) 6966-6972.

DOI: 10.1039/c2ee03495f

Google Scholar

[13] F. Wu, J.Z. Chen, L. Li, T. Zhao, R.J. Chen, Improvement of Rate and Cycle Performence by Rapid Polyaniline Coating of a MWCNT/Sulfur Cathode, J. Phys. Chem. C. 115 (2011) 24411-24417.

DOI: 10.1021/jp207893d

Google Scholar

[14] Y. Zhang, Y. Zhao, Z. Bakenov, M. Tuiyebayeva, A. Konarov, P. Chen, Synthesis of Hierarchical Porous Sulfur/ Polypyrrole/Multiwalled Carbon Nanotube Composite Cathode for Lithium Batteries, Electrochimi. Acta. 143 (2014) 49-55.

DOI: 10.1016/j.electacta.2014.07.148

Google Scholar

[15] X. Liang, Z.Y. Wen, Y. Liu, H. Zhang, J. Jin, M.F. Wu, X.W. Wu, A composite of sulfur and polypyrrole-multi walled carbon combinatorial nanotube as cathode for Li/S battery, J. Power Sources. 206 (2012) 409-413.

DOI: 10.1016/j.jpowsour.2012.01.123

Google Scholar

[16] E. Ruckenstein, Y. Sun, Synthesis of surface conductive polyurethane films, Synth. Met. 75(1995) 7984.

Google Scholar

[17] M.M. Chehimi, E. Abdeljalil, A study of the degradation and stability of polypyrrole by inverse gas chromatography, X-ray photoelectron spectroscopy, and conductivity measurements, Synth. Met. 145 (2004) 15-22.

DOI: 10.1016/j.synthmet.2004.03.015

Google Scholar

[18] M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb Carbon: A Review of Graphene, Chem. Rev. 110 (2009) 132-145.

DOI: 10.1021/cr900070d

Google Scholar

[19] Y. Zhang, Y. Zhao, Z. Bakenov, A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte, Nanoscale Res. Lett. 9 (2014) 137.

DOI: 10.1186/1556-276x-9-137

Google Scholar