Facile Synthesis of Co3O4/Nitrogen-Doped Graphene Composite with Enhanced Electrochemical Performance

Article Preview

Abstract:

Co3O4 nanoflakes/N-doped graphene (NG) was synthesized through a facile two-step synthesis route. The phase composition and morphology of the products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer (EDS). It has been found that introduction of NG has effects on the morphology of Co3O4 and leads to a well distribution of Co3O4 nanoflakes. The electrochemical properties of as-synthesized materials were measured by cyclic voltammetry (CV), galvanostatic charge/discharge tests and electrochemical impedance spectroscopy (EIS). The composite presents an enhanced supercapacitor performance than the pristine Co3O4 nanoflakes, mainly due to the strong synergistic effect of the NG and Co3O4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-21

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.Y. Chen, C. Y Fan, M.T. Lee, Chang, J.K. Chang, Tightly connected MnO2-graphene with tunable energy density and power density for supercapacitor applications, J. Mater. Chem. 22(2012) 7697.

DOI: 10.1039/c2jm16707g

Google Scholar

[2] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7(2008) 845-854.

Google Scholar

[3] B. Conway, Electrochemical supercapacitor, Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers: New York, (1999).

Google Scholar

[4] Y. Zhu, S. Murali, M.D. Stoller, K. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, Carbon-based supercapacitors produced by activation of graphene, Science. 22(2011) 1537-1541.

DOI: 10.1126/science.1200770

Google Scholar

[5] L. Hao, X. Li, L. Zhi, Carbonaceous electrode materials for supercapacitors, Adv. Mater. 25(2013) 3899-904.

DOI: 10.1002/adma.201301204

Google Scholar

[6] L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38(2009) 2520-2531.

Google Scholar

[7] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano lett. 10(2010) 4863-4868.

DOI: 10.1021/nl102661q

Google Scholar

[8] B. Duan, Q. Cao, Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application, Electrochim, Acta. 64(2012) 154-161.

DOI: 10.1016/j.electacta.2012.01.004

Google Scholar

[9] X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano lett. 12(2012) 1690-1696.

DOI: 10.1021/nl300173j

Google Scholar

[10] Z.A. Hu, Y.L. Xie, Y.X. Wang, H.Y. Wu, Y.Y. Yang, Z.Y. Zhang, Synthesis and electrochemical characterization of mesoporous CoxNi1−x layered double hydroxides as electrode materials for supercapacitors, Electrochim. Acta. 54(2009) 2737-2741.

DOI: 10.1016/j.electacta.2008.11.035

Google Scholar

[11] V. Khomenko, E. Frackowiak, F. Beguin, Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations, Electrochim. Acta. 50(2005) 2499-2506.

DOI: 10.1016/j.electacta.2004.10.078

Google Scholar

[12] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Beguin, Supercapacitors based on conducting polymers/nanotubes composites, J. Power Sources. 153(2006) 413-418.

DOI: 10.1016/j.jpowsour.2005.05.030

Google Scholar

[13] Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films, ACS Nano. 4(2010) 1963-(1970).

DOI: 10.1021/nn1000035

Google Scholar

[14] J.S. Chen, Z. Wang, X.C. Dong, P. Chen, X.W.D. Lou, Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities, Nanoscale. 3(2011) 2158-2161.

DOI: 10.1039/c1nr10162e

Google Scholar

[15] K. Lee, S. Deng, H.M. Fan, S. Mhaisalkar, H. Tan, E.S. Tok, K. Loh, W. Chin, C.H. Sow, α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials, Nanoscale. 4(2012) 2958-2961.

DOI: 10.1039/c2nr11902a

Google Scholar

[16] X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection, ACS Nano. 6(2012) 3206-3213.

DOI: 10.1021/nn300097q

Google Scholar

[17] P. Zhao, W. Li, G. Wang, B. Yu, X. Li, J. Bai, Z. Ren, Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor, J. Alloys Compd. 604(2014) 87-93.

DOI: 10.1016/j.jallcom.2014.03.106

Google Scholar

[18] H. Wang, T. Maiyalagan, X. Wang, Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications, ACS Catal. 2(2012) 781-794.

DOI: 10.1021/cs200652y

Google Scholar

[19] S.S. Li, H.P. Cong, P. Wang, S.H. Yu, Flexible nitrogen-doped graphene/carbon nanotube/Co3O4 paper and its oxygen reduction activity, Nanoscale. 6(2014) 7534-41.

DOI: 10.1039/c4nr02101k

Google Scholar

[20] S. Yang, X. Song, P. Zhang, L. Gao, Facile Synthesis of Nitrogen-Doped Graphene–Ultrathin MnO2 Sheet Composites and Their Electrochemical Performances, ACS Appl. Mater. Interfaces. 5(2013) 3317-3322.

DOI: 10.1021/am400385g

Google Scholar

[21] J. Xie, C.X. Guo, C. Li, Construction of One-Dimensional Nanostructures on Graphene for Efficient Energy Conversion and Storage, Energy Environ. Sci. 7(2014) 2559-2579.

DOI: 10.1039/c4ee00531g

Google Scholar

[22] S.Y. Yang, K.H. Chang, H.W. Tien, Y.F. Lee, S.M. Li, Y.S. Wang, J.Y. Wang, C.C.M. Ma, C.C. Hu, Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors, J. Mater. Chem. 21(2011) 2374-2380.

DOI: 10.1039/c0jm03199b

Google Scholar

[23] J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, C. Shao, Y. Liu, Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials, Nanoscale. 3(2011).

DOI: 10.1039/c1nr10972c

Google Scholar

[24] X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41(2012) 666-686.

DOI: 10.1039/c1cs15078b

Google Scholar

[25] Y. Zhai, Y. Dou, D. Zhao, Fulvio, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage, Adv. Mater. 23(2011) 4828-4850.

DOI: 10.1002/adma.201100984

Google Scholar

[26] C. Yuan, L. Yang, L. Hou, J. Li, Y. Sun, X. Zhang, L. Shen, X. Lu, S. Xiong, X.W.D. Lou, Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors, Adv. Funct. Mater. 22(2012).

DOI: 10.1002/adfm.201102860

Google Scholar

[27] Y. Bai, M. Du, J. Chang, J. Sun, L. Gao, Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes, J. Mater. Chem. A. 2(2014) 3834-3840.

DOI: 10.1039/c3ta15004f

Google Scholar

[28] R. Offeman, W. Hummers, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(1958) 1339-1339.

DOI: 10.1021/ja01539a017

Google Scholar

[29] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(2011) 780-786.

DOI: 10.1038/nmat3087

Google Scholar

[30] L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films, Adv. Funct. Mater. 19(2009) 2782-2789.

DOI: 10.1002/adfm.200900377

Google Scholar

[31] Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, F. Wei, A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors, Adv. Mater. 22(2010) 3723-3728.

DOI: 10.1002/adma.201001029

Google Scholar

[32] K. Subrahmanyam, S. Vivekchand, A. Govindaraj, C. Rao, A study of graphenes prepared by different methods: characterization, properties and solubilization, J. Mater. Chem. 18(2008) 1517-1523.

DOI: 10.1039/b716536f

Google Scholar

[33] L. Wang, X. Jia, Y. Li, F. Yang, L. Zhang, L. Liu, X. Ren, H. Yang, Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles, J. Mater. Chem. A. 2(2014) 14940-14946.

DOI: 10.1039/c4ta02815e

Google Scholar

[34] Y. Yue, P. Han, X. He, K. Zhang, Z. Liu, C. Zhang, S. Dong, L. Gu, G. Cui, In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage, J. Mater. Chem. 22(2012) 4938-4943.

DOI: 10.1039/c2jm16128a

Google Scholar

[35] B. Varghese, C. Teo, Y. Zhu, Reddy, M.V. Reddy, B.V. Chowdari, A.T.S. Wee, V. Tan, C.T. Lim, C.H. Sow, Co3O4 Nanostructures with Different Morphologies and their Field‐Emission Properties, Adv. Funct. Mater. 17(2007) 1932-(1939).

DOI: 10.1002/adfm.200700038

Google Scholar

[36] L. Wang, Y. Zheng, X. Wang, S. Chen, F. Xu, L. Zuo, J. Wu, L. Sun, Z. Li, H. Hou, Nitrogen-Doped Porous Carbon/Co3O4 Nanocomposites as Anode Materials for Lithium Ion Batteries, ACS Appl. Mater. Interfaces. 6(2014) 7117-7125.

DOI: 10.1021/am406053s

Google Scholar

[37] X. He, Y. Geng, J. Qiu, M. Zheng, S. Long, X. Zhang, Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors, Carbon. 48(2010) 16-62.

DOI: 10.1016/j.carbon.2010.01.016

Google Scholar

[38] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano lett. 8(2008) 34-98.

Google Scholar

[39] J. Liu, J. Jiang, M. Bosman, H.J. Fan, Three-dimensional tubular arrays of MnO2-NiO nanoflakes with high areal pseudocapacitance, J. Mater. Chem. 22(2002) 23-67.

DOI: 10.1039/c1jm14804d

Google Scholar

[40] Z.S. Wu, W. Ren, L. Xu, F. Li, H.M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries, ACS Nano. 25(2011) 23-53.

DOI: 10.1021/nn2006249

Google Scholar