[1]
C.Y. Chen, C. Y Fan, M.T. Lee, Chang, J.K. Chang, Tightly connected MnO2-graphene with tunable energy density and power density for supercapacitor applications, J. Mater. Chem. 22(2012) 7697.
DOI: 10.1039/c2jm16707g
Google Scholar
[2]
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7(2008) 845-854.
Google Scholar
[3]
B. Conway, Electrochemical supercapacitor, Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers: New York, (1999).
Google Scholar
[4]
Y. Zhu, S. Murali, M.D. Stoller, K. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, Carbon-based supercapacitors produced by activation of graphene, Science. 22(2011) 1537-1541.
DOI: 10.1126/science.1200770
Google Scholar
[5]
L. Hao, X. Li, L. Zhi, Carbonaceous electrode materials for supercapacitors, Adv. Mater. 25(2013) 3899-904.
DOI: 10.1002/adma.201301204
Google Scholar
[6]
L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38(2009) 2520-2531.
Google Scholar
[7]
C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano lett. 10(2010) 4863-4868.
DOI: 10.1021/nl102661q
Google Scholar
[8]
B. Duan, Q. Cao, Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application, Electrochim, Acta. 64(2012) 154-161.
DOI: 10.1016/j.electacta.2012.01.004
Google Scholar
[9]
X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano lett. 12(2012) 1690-1696.
DOI: 10.1021/nl300173j
Google Scholar
[10]
Z.A. Hu, Y.L. Xie, Y.X. Wang, H.Y. Wu, Y.Y. Yang, Z.Y. Zhang, Synthesis and electrochemical characterization of mesoporous CoxNi1−x layered double hydroxides as electrode materials for supercapacitors, Electrochim. Acta. 54(2009) 2737-2741.
DOI: 10.1016/j.electacta.2008.11.035
Google Scholar
[11]
V. Khomenko, E. Frackowiak, F. Beguin, Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations, Electrochim. Acta. 50(2005) 2499-2506.
DOI: 10.1016/j.electacta.2004.10.078
Google Scholar
[12]
E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Beguin, Supercapacitors based on conducting polymers/nanotubes composites, J. Power Sources. 153(2006) 413-418.
DOI: 10.1016/j.jpowsour.2005.05.030
Google Scholar
[13]
Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films, ACS Nano. 4(2010) 1963-(1970).
DOI: 10.1021/nn1000035
Google Scholar
[14]
J.S. Chen, Z. Wang, X.C. Dong, P. Chen, X.W.D. Lou, Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities, Nanoscale. 3(2011) 2158-2161.
DOI: 10.1039/c1nr10162e
Google Scholar
[15]
K. Lee, S. Deng, H.M. Fan, S. Mhaisalkar, H. Tan, E.S. Tok, K. Loh, W. Chin, C.H. Sow, α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials, Nanoscale. 4(2012) 2958-2961.
DOI: 10.1039/c2nr11902a
Google Scholar
[16]
X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection, ACS Nano. 6(2012) 3206-3213.
DOI: 10.1021/nn300097q
Google Scholar
[17]
P. Zhao, W. Li, G. Wang, B. Yu, X. Li, J. Bai, Z. Ren, Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor, J. Alloys Compd. 604(2014) 87-93.
DOI: 10.1016/j.jallcom.2014.03.106
Google Scholar
[18]
H. Wang, T. Maiyalagan, X. Wang, Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications, ACS Catal. 2(2012) 781-794.
DOI: 10.1021/cs200652y
Google Scholar
[19]
S.S. Li, H.P. Cong, P. Wang, S.H. Yu, Flexible nitrogen-doped graphene/carbon nanotube/Co3O4 paper and its oxygen reduction activity, Nanoscale. 6(2014) 7534-41.
DOI: 10.1039/c4nr02101k
Google Scholar
[20]
S. Yang, X. Song, P. Zhang, L. Gao, Facile Synthesis of Nitrogen-Doped Graphene–Ultrathin MnO2 Sheet Composites and Their Electrochemical Performances, ACS Appl. Mater. Interfaces. 5(2013) 3317-3322.
DOI: 10.1021/am400385g
Google Scholar
[21]
J. Xie, C.X. Guo, C. Li, Construction of One-Dimensional Nanostructures on Graphene for Efficient Energy Conversion and Storage, Energy Environ. Sci. 7(2014) 2559-2579.
DOI: 10.1039/c4ee00531g
Google Scholar
[22]
S.Y. Yang, K.H. Chang, H.W. Tien, Y.F. Lee, S.M. Li, Y.S. Wang, J.Y. Wang, C.C.M. Ma, C.C. Hu, Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors, J. Mater. Chem. 21(2011) 2374-2380.
DOI: 10.1039/c0jm03199b
Google Scholar
[23]
J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, C. Shao, Y. Liu, Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials, Nanoscale. 3(2011).
DOI: 10.1039/c1nr10972c
Google Scholar
[24]
X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites, Chem. Soc. Rev. 41(2012) 666-686.
DOI: 10.1039/c1cs15078b
Google Scholar
[25]
Y. Zhai, Y. Dou, D. Zhao, Fulvio, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage, Adv. Mater. 23(2011) 4828-4850.
DOI: 10.1002/adma.201100984
Google Scholar
[26]
C. Yuan, L. Yang, L. Hou, J. Li, Y. Sun, X. Zhang, L. Shen, X. Lu, S. Xiong, X.W.D. Lou, Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors, Adv. Funct. Mater. 22(2012).
DOI: 10.1002/adfm.201102860
Google Scholar
[27]
Y. Bai, M. Du, J. Chang, J. Sun, L. Gao, Supercapacitors with high capacitance based on reduced graphene oxide/carbon nanotubes/NiO composite electrodes, J. Mater. Chem. A. 2(2014) 3834-3840.
DOI: 10.1039/c3ta15004f
Google Scholar
[28]
R. Offeman, W. Hummers, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(1958) 1339-1339.
DOI: 10.1021/ja01539a017
Google Scholar
[29]
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(2011) 780-786.
DOI: 10.1038/nmat3087
Google Scholar
[30]
L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films, Adv. Funct. Mater. 19(2009) 2782-2789.
DOI: 10.1002/adfm.200900377
Google Scholar
[31]
Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, F. Wei, A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors, Adv. Mater. 22(2010) 3723-3728.
DOI: 10.1002/adma.201001029
Google Scholar
[32]
K. Subrahmanyam, S. Vivekchand, A. Govindaraj, C. Rao, A study of graphenes prepared by different methods: characterization, properties and solubilization, J. Mater. Chem. 18(2008) 1517-1523.
DOI: 10.1039/b716536f
Google Scholar
[33]
L. Wang, X. Jia, Y. Li, F. Yang, L. Zhang, L. Liu, X. Ren, H. Yang, Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles, J. Mater. Chem. A. 2(2014) 14940-14946.
DOI: 10.1039/c4ta02815e
Google Scholar
[34]
Y. Yue, P. Han, X. He, K. Zhang, Z. Liu, C. Zhang, S. Dong, L. Gu, G. Cui, In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage, J. Mater. Chem. 22(2012) 4938-4943.
DOI: 10.1039/c2jm16128a
Google Scholar
[35]
B. Varghese, C. Teo, Y. Zhu, Reddy, M.V. Reddy, B.V. Chowdari, A.T.S. Wee, V. Tan, C.T. Lim, C.H. Sow, Co3O4 Nanostructures with Different Morphologies and their Field‐Emission Properties, Adv. Funct. Mater. 17(2007) 1932-(1939).
DOI: 10.1002/adfm.200700038
Google Scholar
[36]
L. Wang, Y. Zheng, X. Wang, S. Chen, F. Xu, L. Zuo, J. Wu, L. Sun, Z. Li, H. Hou, Nitrogen-Doped Porous Carbon/Co3O4 Nanocomposites as Anode Materials for Lithium Ion Batteries, ACS Appl. Mater. Interfaces. 6(2014) 7117-7125.
DOI: 10.1021/am406053s
Google Scholar
[37]
X. He, Y. Geng, J. Qiu, M. Zheng, S. Long, X. Zhang, Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors, Carbon. 48(2010) 16-62.
DOI: 10.1016/j.carbon.2010.01.016
Google Scholar
[38]
M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano lett. 8(2008) 34-98.
Google Scholar
[39]
J. Liu, J. Jiang, M. Bosman, H.J. Fan, Three-dimensional tubular arrays of MnO2-NiO nanoflakes with high areal pseudocapacitance, J. Mater. Chem. 22(2002) 23-67.
DOI: 10.1039/c1jm14804d
Google Scholar
[40]
Z.S. Wu, W. Ren, L. Xu, F. Li, H.M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries, ACS Nano. 25(2011) 23-53.
DOI: 10.1021/nn2006249
Google Scholar