Effect of Doping Elements on High Temperature Properties of Tungsten Products

Article Preview

Abstract:

The tungsten products including tungsten electrode, tungsten filament, tungsten crucible have been widely used in national production. To study their properties at high temperature can provide a basis for improving the production process and the quality of processing as well as reducing production defects, which has important significance for the optimization of the performance and life extension of tungsten products. In this paper the development of tungsten and tungsten products is briefly introduced, the effects of many kinds of doped elements and doped compounds on high temperature mechanical properties is summarized, the research status of high temperature properties of tungsten products described in detail. And the development direction and application prospects for optimizing the high temperature performance of tungsten products has been out looked,in order to provide a reference for the research on the mechanical properties under high temperature of tungsten products.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-64

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.Z. Wang, L. X, Tang, P.F. Feng, et al., Tungsten material and its processing, Beijing Metallurgical Industry Press, 2008, pp.2-530.

Google Scholar

[2] M. Faleschini, H. Kreuzer, D. Kiner, et al. Fracture toughness investigations of tungsten alloys and SPD tungsten alloys, Journal of Nuclear Materials. 367-370(2007)800-805.

DOI: 10.1016/j.jnucmat.2007.03.079

Google Scholar

[3] M.V. Aguirre, A. Martin, J.Y. Pastor, et al. Mechanical behavior of W-Y2O3 and W-Ti alloys from 25℃to 1000℃. Metallurgical and Materials Transactions A. 40(2009)2283-2285.

DOI: 10.1007/s11661-009-9956-4

Google Scholar

[4] T.Q. Zhang, Y.J. Wang, Y. Zhou, et al. Effect of ZrC particle size on microstructure and room temperature mechanical properties of ZrC/W composites. Materials Science and Engineering A. 527(2010)4021-4027.

DOI: 10.1016/j.msea.2010.03.008

Google Scholar

[5] J.J. Park, Creep strength of a tungsten-rhenium-hafnium carbide alloy from 2000 to 2400K. Materials Science and Engineering A. 265(1999)174-178.

DOI: 10.1016/s0921-5093(98)01134-4

Google Scholar

[6] N.O. Moraga, D.L. Jacobson, J.F. Morris, et al. Fracture-resistant ultra-alloys for space-power systems: nuclear-thermionic conversion implications of W, 27Re. Engineering Fracture Mechanics. 34(1989)553-565.

DOI: 10.1016/0013-7944(89)90118-5

Google Scholar

[7] Q.X. Wang, X.H. Wang, Y. Yang, et al. Preparation of W-15%Ti pre-alloyed powders, International Journal of Refractory Metals Hard Materials, 27(2009) 847-850.

DOI: 10.1016/j.ijrmhm.2009.03.004

Google Scholar

[8] J.L. Fan, P.F. Li, T. Liu, Y. Han, Y.Q. Lv. Research progress of high performance fine grained tungsten and tungsten alloys. China Tungsten Industry, 30 (2015)41-48.

Google Scholar

[9] H. Kurishita, Y. Amano, S. Kobayashi, et al., Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications. Journal of Nuclear Materials, 367/370(2007) 1453-1457.

DOI: 10.1016/j.jnucmat.2007.04.008

Google Scholar

[10] H. Kurishita , S. Matsuo, H. Arakawa, et al. Superplastic deformation in W-0. 5wt%TiC with approximately 0. 1μm grain size. Materials Science and Engineering A. 477(2008)162-167.

DOI: 10.1016/j.msea.2007.05.009

Google Scholar

[11] H. Kurishita, S. Matsuo, H. Arakawa, et al. High temperature tensile properties and their application to toughness enhancement in ultra-fine grained W-(0-1. 5) wt% TiC. Journal of Nuclear Materials, 386/388(2009)579-582.

DOI: 10.1016/j.jnucmat.2008.12.181

Google Scholar

[12] J.H. Kim, C. Park, J. Lim, et al. Microstructures and properties of ultrafine grained W-ZrC composites. Alloys compd. 623(2015)282-289.

DOI: 10.1016/j.jallcom.2014.10.128

Google Scholar

[13] M. Faleschini, H. Kreuzer, D. Kiner, et al. Fracture toughness investigations of tungsten alloys and SPD tungsten alloys. Journal of Nuclear Materials, 367-370(2007)800-805.

DOI: 10.1016/j.jnucmat.2007.03.079

Google Scholar

[14] S. Zhang. The study of organization structure and mechanical properties of Carbide reinforced W alloy. Central South University, (2012).

Google Scholar

[15] S. Hu, The influence of ball milling time on W grain size and sintering densification behavior of W-30Cu composite powder. Metal materials and Metallurgical Engineering, 36(2008) 6-10.

Google Scholar

[16] J.H. Kim, M. SEO, S. Kang, Effect of carbide particle size on the properties of W-ZrC composites. International Journal of Refractory Metals and Hard Materials, 527(2010)4021-4027.

DOI: 10.1016/j.ijrmhm.2012.03.010

Google Scholar

[17] M. Roosta, H. Baharvandi. The change occurred in W/ZrC composite properties by using nano reactants. International Journal of Refractory Metals and Hard Materials, 37(2013)29-32.

DOI: 10.1016/j.ijrmhm.2012.10.012

Google Scholar

[18] M. Roosta, H. Baharvandi. The comparison of W/Cu and W/ZrC composites fabricated through hot -press. International Journal of Refractory Metals and Hard Materials, 28(2010)587-592.

DOI: 10.1016/j.ijrmhm.2010.04.006

Google Scholar

[19] G.M. Song, Y.J. Wang, Y. Zhou, The mechanical and thermos-physical properties of ZrC/W composites at elevated temperature. Materials Science and Engineering A. 334(2002)223-232.

DOI: 10.1016/s0921-5093(01)01802-0

Google Scholar

[20] T.Q. Zhang, Y.J. Wang, Y. Zhou. et al. Effect of heat treatment on microstructure and mechanical properties of ZrC particles reinforced tungsten-matrix composites. Materials Science and Engineering A. 512(2009)19-25.

DOI: 10.1016/j.msea.2009.01.078

Google Scholar

[21] T.Q. Zhang, Y.J. Wang, Y. Zhou. et al., Effect of ZrC particle size on microstructure and room temperature mechanical properties of ZrC-W composites. Mater. Sci. Eng A. 527(2010)4021-4027.

DOI: 10.1016/j.msea.2010.03.008

Google Scholar

[22] W.D. Klopp, W.R. Witzke. Mechanical properties of a tungsten 23. 4% rhenium 0. 27% hafnium-carbon alloy. Journal of the Less Common Metals, 1971(24)427-443.

DOI: 10.1016/0022-5088(71)90028-2

Google Scholar

[23] L. Todd, Processing and properties of tungsten 25% rhenium with and hafnium carbied. 17th Planse Seminar. 25(2009)1-10.

Google Scholar

[24] F. Wang, X. Zheng, L.P. Li, X.M. Zhang, R. Bai, M.X. Xia, H. Wang, Research progress of the preparation method and high temperature mechanical properties of tungsten-rhenium alloy. China Tungsten Industry, 29 (2014).

Google Scholar

[25] P.L. Raffo, W.D. Klopp. Refractory metals and alloys IV: research and development. New York: Gordon and Breach, 1969, 501.

Google Scholar

[26] W.D. Klopp, P.L. Raffo, W.R. Witzke. Strengthening of molybdenum and tungsten alloys with HfC. Journal of Metals, 23(1971)27-38.

DOI: 10.1007/bf03355708

Google Scholar

[27] B.H. Tsao, D.L. Jacobson, J.F. Morris. Fracture–resistant ultra-alloys for space-power systems: high temperature tensile characteristics and fractographs for W-30Re and W-30Re-1ThO2. Engineering Fracture Mechanics, 34(1989)567-577.

DOI: 10.1016/0013-7944(89)90119-7

Google Scholar