[1]
Nathan S. Lewis, Toward Cost-Effective Solar Energy Use. Science 315 (2007) 798-801.
DOI: 10.1126/science.1137014
Google Scholar
[2]
Michael Grätzel, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorg. Chem. 44 (2005) 6841-6851.
DOI: 10.1021/ic0508371
Google Scholar
[3]
Zhijun Ning, Ying Fu and He Tian, Improvement of Dye-sensitized Solar Cells, Energy Environ. Sci. 3 (2010) 1170-1181.
Google Scholar
[4]
Brain. O'Regan, Michael Grätzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 (1991) 737-740.
DOI: 10.1038/353737a0
Google Scholar
[5]
Aswani Yella, Hsuan Wei Lee, Hoi Nok Tsao, Chenyi Yi, Aravind Kumar Chandiran, Md. Khaja Nazeeruddin, Eric Wei-Guang Diau, Chen-Yu Yeh, Shaik M Zakeeruddin, Michael Grätzel. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 334 (2011).
DOI: 10.1126/science.1209688
Google Scholar
[6]
Hongsik Choi, Changwoo Nahm, Jongmin Kim, Chohui Kim, Suji Kang, Taehyun Hwang, Byungwoo Park. Review paper: Toward highly efficient quantum-dot and dye-sensitized solar cells. Current Applied Physics 13 (2013) S2-S13.
DOI: 10.1016/j.cap.2013.01.023
Google Scholar
[7]
J. Britt, C. Ferekides. Thin‐film CdS/CdTe solar cell with 15. 8% efficiency. Appl. Phys. Lett. 62 (1993) 2851.
DOI: 10.1063/1.109629
Google Scholar
[8]
Yafit Itzhaik, Olivia Niitsoo, Miles Page, Gary Hodes, Sb2S3-Sensitized Nanoporous TiO2 Solar Cells. J. Phys. Chem. 113 (2009) 4254-4256.
DOI: 10.1021/jp900302b
Google Scholar
[9]
Philip Jackson, Dimitrios Hariskos, Erwin Lotter, Stefan Paetel, Roland Wuerz, Richard Menner, Wiltraud Wischmann, Michael Powalla. New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovolt: Res. Appl. (2011).
DOI: 10.1002/pip.1078
Google Scholar
[10]
Xiangbo Song, Xu Ji, Ming Li, Weidong Lin, Xi Luo, and Hua Zhang, A Review on Development Prospect of CZTS Based Thin Film Solar Cells, International Journal of Photoenergy 2014 (2014) 11.
DOI: 10.1155/2014/613173
Google Scholar
[11]
Mark T. Winkler, Wei Wang, Oki Gunawan, Harold J. Hovel, Teodor K. Todorov and David B. Mitzi, Optical designs that improve the efficiency of Cu2ZnSn(S, Se)4 solar cells. Energy Environ Sci. (2014) 1029-1036.
DOI: 10.1039/c3ee42541j
Google Scholar
[12]
Qijie Guo, Hugh W. Hillhouse and Rakesh Agrawal, Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells. J. Am. Chem. Soc. 131 (2009) 11672-11673.
DOI: 10.1021/ja904981r
Google Scholar
[13]
Mali Sawanta, Shinde Pravin, Betty Chirayath, Bhosale Popatrao, Patil Pramod. Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. J. Phys. Chem. Solids. 73 (2012) 735-740.
DOI: 10.1016/j.jpcs.2012.01.008
Google Scholar
[14]
Christophe J. Barbé, Francine Arendse, Pascal Comte, Marie Jirousek, Frank Lenzmann, Valery Shklover and Michael Grätzel, Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. J. Am. Ceram. Soc. 80 (1997) 3157-3171.
DOI: 10.1111/j.1151-2916.1997.tb03245.x
Google Scholar
[15]
B Bhattacharya, S K Tomar and Jung-Ki Park. A nanoporous TiO2 electrode and new ionic liquid doped solid polymer electrolyte for dye sensitized solar cell application, Nanotechnology 18 (2007) 485711.
DOI: 10.1088/0957-4484/18/48/485711
Google Scholar
[16]
Dehong Chen, Fuzhi Huang, Yi-Bing Cheng, Rachel A. Caruso. Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells, Advanced Materials. 21 (2009).
DOI: 10.1002/adma.200802603
Google Scholar
[17]
Xianfeng You, Feng Chen, Jinlong Zhang. Effects of Calcination on the Physical and Photocatalytic Properties of TiO2 Powders Prepared by Sol–Gel Template Method, Journal of Sol-Gel Science and Technology. 34 (2005) 181-187.
DOI: 10.1007/s10971-005-1358-5
Google Scholar
[18]
Mohammad K. Nazeeruddin, Peter Péchy, Thierry Renouard, Shaik M. Zakeeruddin, Robin Humphry-Baker, Pascal Comte, Paul Liska, Le Cevey, Emiliana Costa, Valery Shklover, Leone Spiccia, Glen B. Deacon, Carlo A. Bignozzi, Michael Grätzel, et al., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells, J. Am. Chem. Soc. 123 (2001).
DOI: 10.1021/ja003299u
Google Scholar
[19]
Wenchao Liu, Binglei Guo, Cheeleung Mak, Aidong Li, Xiaoshan Wu, Fengming Zhang, Facile synthesis of ultrafine Cu2ZnSnS4 nanocrystals by hydrothermal method for use in solar cells. Thin Solid Films 535 (2013) 39-43.
DOI: 10.1016/j.tsf.2012.11.073
Google Scholar
[20]
Hyunwoong Seo, Min-Kyu Son, Jin-Kyoung Kim, Inyoung Shin, Kandasamy Prabakar, Hee-Je Kim. Method for fabricating the compact layer in dye-sensitized solar cells by titanium sputter deposition and acid-treatments, Solar Energy Materials & Solar Cells. 95 (2011).
DOI: 10.1016/j.solmat.2010.05.001
Google Scholar
[21]
André Moliton, Jean-Michel Nunzi, How to model the behaviour of organic photovoltaic cells. Polymer International 55 (2006) 583-600.
DOI: 10.1002/pi.2038
Google Scholar
[22]
R. O' Hayre, M. Nanu, J. Schoonman, A. Goossens, Q. Wang, M. Gr¨atzel, The Influence of TiO2 Particle Size in TiO2/CuInS2 Nanocomposite Solar Cells. Adv. Funct. Mater. 16 (2006) 1566-1576.
DOI: 10.1002/adfm.200500647
Google Scholar
[23]
Zhen Huanga, Xizhe Liu, Kexin Li, Dongmei Li, Yanhong Luo, Hong Li, Wenbo Song, LiQuan Chen, Qingbo Meng, Application of carbon materials as counter electrodes of dye-sensitized solar cells, Electrochemistry Communications. 9 (2007) 596-598.
DOI: 10.1016/j.elecom.2006.10.028
Google Scholar