Preparation of Highly Transparent Silica Glass by SPS Sintering of SBA-15

Article Preview

Abstract:

Silica glass was prepared via the spark plasma sintering (SPS) method by using SBA-15 as the starting material. Five temperatures (1000, 1010, 1020, 1030 and 1040°C) were selected as the final sintering temperature above 600°C. The transparent silica glass was prepared by SPS sintering of mesoporous silica SBA-15 at 1040°C. The impact of temperature structure collapse of SBA-15, the structure and transmittance of the glass were studied using X ray diffraction, SEM, TEM, Infrared analysis, Raman analysis and UV-VIS spectrophotometer. Results show that SBA-15 collapsed completely at 1040°C, the sintered glass had high transmittance of above 90% in visible spectra, and its hardness was 6.96 Gpa, and that the sintered transparent sample was silica glass. The work demonstrated a novel strategy to use SPS to prepare highly transparent silica glass by sintering of SBA-15.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

312-318

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.Q. Jiang, X. Yao, J. Che, M.Q. Wang, F.T. Kong, Preparation of ZnSe Quantum Dots Embedded in SiO2 Thin Films by Sol-gel Process, Ceram. Int. 30(2004) 1685-1689.

DOI: 10.1016/j.ceramint.2004.03.030

Google Scholar

[2] S.T. Selvan, T. Hayakawa, M. Nogami, Y. Kobayashi, L.M. Liz-Marzan, Y. Hamanaka, A. Nakamura, Sol-gel Derived Gold Nanoclusters in Silica Glass Possessing Large Optical Nonlinearities, J. Phys. Chem. B. 106(2002) 10157-10162.

DOI: 10.1021/jp020860x

Google Scholar

[3] T.G. Mayerhofer, Z. J. Shen, E. Leonova, M. Eden, A. Kriltz, J. Popp, Consolidated Silica Slass from Nanoparticles, J. Solid State Chem. 181(2008) 2442-2447.

DOI: 10.1016/j.jssc.2008.06.011

Google Scholar

[4] E.A. Olevsky, S. Kandukuri, L. Froyen, Consolidation Enhancement in Spark-plasma Sintering: Impact of High Heating Rates, J. Appl. Phys. 102(2007) 114913.

DOI: 10.1063/1.2822189

Google Scholar

[5] R. Orru, R. Licheri, A.M. Locci, A. Cincotti, G.C. Cao, Consolidation/synthesis of Materials by Electric Current Activated/assisted Sintering, Mater. Sci. Eng. R-Rep. 63(2009) 127-287.

DOI: 10.1016/j.mser.2008.09.003

Google Scholar

[6] Z.A. Munir, D.V. Quach, M. Ohyanagi, Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process, J. Am. Ceram. Soc. 94(2011) 1-19.

DOI: 10.1111/j.1551-2916.2010.04210.x

Google Scholar

[7] J.E. Garay, Current-Activated, Pressure-Assisted Densification of Materials, Annu. Rev. Mater. Res. 40(2010) 445-468.

DOI: 10.1146/annurev-matsci-070909-104433

Google Scholar

[8] L. Gao, J. Hong, H. Miyamoto, S. De La Torre, Superfast Densification of Oxide Ceramics by Spark Plasma Sintering, J. Inorg. Mater. 13(1998) 18-22.

Google Scholar

[9] J. X. Zhang, K. G. Liu, M. L. Zhou, Development and Application of Spark Plasma Sintering, Powder Metall. Technol. 20(2002) 129-134.

Google Scholar

[10] K. Vanmeensel, A. Laptev, O. Van der Biest, J. Vleugels, Field Assisted Sintering of Electro-conductive ZrO2-based Composites, J. Eur. Ceram. Soc. 27(2007) 979-985.

DOI: 10.1016/j.jeurceramsoc.2006.04.142

Google Scholar

[11] L.J. Wang, J.F. Zhang, W. Jiang, Recent Development in Reactive Synthesis of Nanostructured Bulk Materials by Spark Plasma Sintering, Int. J. Refract. Met. Hard Mater. 39(2013) 103-112.

DOI: 10.1016/j.ijrmhm.2013.01.017

Google Scholar

[12] S. Wei, Z.H. Zhang, X.B. Shen, F.C. Wang, M.Y. Sun, R. Yang, S.K. Lee, Simulation of Temperature and Stress Distributions in Functionally Graded Materials Synthesized by a Spark Plasma Sintering Process, Comput. Mater. Sci. 60(2012) 168-175.

DOI: 10.1016/j.commatsci.2012.03.024

Google Scholar

[13] T.G. Mayerhöfer, Z. Shen, E. Leonova, M. Edén, A. Kriltz, J. Popp, Consolidated Silica Glass from Nanoparticles, J. Solid State Chem. 181(2008) 2442-2447.

DOI: 10.1016/j.jssc.2008.06.011

Google Scholar

[14] O. Yong-Taeg, S. Fujino, K. Morinaga, Fabrication of Transparent Silica Glass by Powder Sintering, Sci. Technol. Adv. Mater. 3(2002) 297-301.

DOI: 10.1016/s1468-6996(02)00030-x

Google Scholar

[15] T. Yamada, M. Nakajima, T. Suemoto, T. Uchino, Formation and Photoluminescence Characterization of Transparent Silica Glass Prepared by Solid-phase Reaction of Nanometer-sized Silica Particles, J. Phys. Chem. A. 111(2007) 12973-12979.

DOI: 10.1021/jp072312v

Google Scholar

[16] L.J. Wang, W. Jiang, L.D. Chen, Z.J. Shen, Formation of a Unique Glass by Spark Plasma Sintering of a Zeolite, J. Mater. Res. 24(2009) 3241-3245.

DOI: 10.1557/jmr.2009.0385

Google Scholar

[17] Y. Gong, H.R. Chen, Q.J. He, J.L. Shi, L.J. Wang, W. Jiang, Preparation of Er3+/Yb3+ Co-doped Zeolite-derived Silica Glass and Its Upconversion Luminescence Property, Ceram. Int. 39(2013) 8865-8868.

DOI: 10.1016/j.ceramint.2013.04.079

Google Scholar

[18] S.J. Gu, X. Zhang, L.J. Wang, X.H. Gan, Z.J. Shen, W. Jiang, Direct Indication of a Higher Central Temperature Achieved during Spark Plasma Sintering Process of a Zeolite, J. Eur. Ceram. Soc. 35(2015) 1599-1603.

DOI: 10.1016/j.jeurceramsoc.2014.11.012

Google Scholar

[19] D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science. 279(1998) 548-552.

DOI: 10.1126/science.279.5350.548

Google Scholar

[20] D.A. Zatsepin, R.J. Green, A. Hunt, E.Z. Kurmaev, N.V. Gavrilov, A. Moewes, Structural Ordering in a Silica Glass Matrix under Mn Ion Implantation, J. Phys.: Condens. Matter. 24(2012) 185402.

DOI: 10.1088/0953-8984/24/18/185402

Google Scholar

[21] R.L. Coble, Diffusion Models for Hot Pressing with Surface Energy and Pressure Effects as Driving Forces, J. Appl. Phys. 41(1970) 4798-4807.

DOI: 10.1063/1.1658543

Google Scholar

[22] B. Cabal, F. Quintero, L.A. Diaz, F. Rojo, O. Dieste, J. Pou, R. Torrecillas, J.S. Moya, Nanocomposites of Silver Nanoparticles Embedded in Glass Nanofibres Obtained by Laser Spinning, Nanoscale. 5(2013) 3948-3953.

DOI: 10.1039/c3nr00638g

Google Scholar

[23] E.M.A. Khalil, F.H. ElBatal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, Infrared Absorption Spectra of Transition Metals-doped Soda Lime Silica Glasses, Physica B. 405(2010) 1294-1300.

DOI: 10.1016/j.physb.2009.11.070

Google Scholar

[24] C. Sonneville, A. Mermet, B. Champagnon, C. Martinet, J. Margueritat, D. De Ligny, T. Deschamps, F. Balima, Progressive Transformations of Silica Glass upon Densification, J. Chem. Phys. 137(2012) 124505.

DOI: 10.1063/1.4754601

Google Scholar

[25] H. Aguiar, J. Serra, P. Gonzalez, B. Leon, Influence of the Stabilization Temperature on the Structure of Bioactive Sol-Gel Silicate Glasses, J. Am. Ceram. Soc. 93(2010) 2286-2291.

DOI: 10.1111/j.1551-2916.2010.03733.x

Google Scholar

[26] H. Hidai, M. Yoshioka, K. Hiromatsu, H. Tokura, Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation, J. Am. Ceram. Soc. 93(2010) 1597-1601.

DOI: 10.1111/j.1551-2916.2010.03615.x

Google Scholar

[27] M. Hornfeck, R. Clasen, S. Rosenbaum, Optical Spectroscopy on Glasses Sintered from Nanosized Particles, J. Mol. Struct. 348(1995) 461-464.

DOI: 10.1016/0022-2860(95)08688-r

Google Scholar

[28] R. Hemley, H. Mao, P. Bell, B. Mysen, Raman Spectroscopy of SiO2 Glass at High Pressure, Phys. Rev. Lett. 57(1986) 747.

Google Scholar

[29] T.G. Mayerhoefer, Z.J. Shen, E. Leonova, M. Edén, A. Kriltz, J. Popp, Consolidated Silica Glass from Nanoparticles, J. Solid State Chem. 181(2008) 2442-2447.

DOI: 10.1016/j.jssc.2008.06.011

Google Scholar