Effect of Polyvinyl Pyrrolidone Dosage on Barium Ferrite Fibers via Electrospinning

Article Preview

Abstract:

Barium ferrite micro/nanofibers were successfully prepared via the electrospinning by using dimethyl formamide (DMF) as the solvent, poly vinyl pyrrolidone (PVP) as the spinning auxiliaries and iron nitrate and barium nitrate as raw materials. The effect of poly vinyl pyrrolidone on the structure, morphology, magnetic and microwave absorbing properties were investigated by scanning electron microscope (SEM), X-ray diffraction analysis (XRD), vibration sample magnetometer (VSM) and vector network analyzer (VNA). XRD patterns of the samples confirmed that when the additive content of PVP was up to 10%, (wt%) pure barium ferrite fibers formed under the condition of the same heat treatment. Also, the FE-SEM images showed that the morphology of the fibers improved with the increase of PVP content. Moreover, the VSM results demonstrated that the saturation magnetization can reach 54.7 emu/g when the PVP dosage is 14% (wt%) in the precursor solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

333-338

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. S. Martirosyan, E. Galstyan, S. M. Hossain, Y. J. Wang, D. Litvinov, Barium hexaferrite nanoparticles: synthesis and magnetic properties, Mater. Sci. Eng. B 176 (1) (2011) 8-13.

DOI: 10.1016/j.mseb.2010.08.005

Google Scholar

[2] M. Radwan, M. Rashad, M. Hessien, Synthesis and characterization of barium hexaferrite nanoparticles, J. Mater. Process. Technol. 181 (1) (2007) 106-109.

DOI: 10.1016/j.jmatprotec.2006.03.015

Google Scholar

[3] R. C. Pullar, Hexagonal ferrites: are view of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci. 57 (7) (2012) 1191-1334.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[4] V. V. Soman, V. Nanoti, D. Kulkarni, Dielectric and magnetic properties of Mg-Ti substituted barium hexaferrite, Ceram. Int. 39 (2003) 5513-5523.

DOI: 10.1016/j.ceramint.2012.12.089

Google Scholar

[5] Z. Mosleh, P. Kamelin, M. Ranjbar, H. Salamati, Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles, Ceram. Int. 40 (2014) 7279-7284.

DOI: 10.1016/j.ceramint.2013.12.068

Google Scholar

[6] S. M. El-Sayed, T. M. Meaz, M. A. Amer, Effect of Trivalent Ion Substitution on the Physical Properties of M-Type Hexagonal Ferrites, Part. Sci. Technol. 32(1) (2014) 39-45.

DOI: 10.1080/02726351.2013.793759

Google Scholar

[7] S. H. Zhang, S. Z. Xu, X. T. Dong, Preparation and characteristic of hollow PVP nanofibers via electrostatic spinning technique, Journal of changchun university of science and technology, 30(4) (2008)15-18.

Google Scholar

[8] J. Dai, Y. Dai, Z. Wang, Preparation and magnetic properties of lanthanum-and cobalt-codoped M-type strontium ferrite nanofibres, J. Exp. Nanosci. (ahead-of-print) (2013)1-9.

DOI: 10.1080/17458080.2013.824618

Google Scholar

[9] T. Ondarcuhu, C. Joachim. Drawing a single nanofibre over hundreds of microns, Europhys Lett. 42 (1998) 215-220.

DOI: 10.1209/epl/i1998-00233-9

Google Scholar

[10] D. Chen, X. Qiao, X. Qiu, J. Chen, R. Jiang. Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method, J Colloid Interface Sci. 344 (2010) 286-291.

DOI: 10.1016/j.jcis.2009.12.055

Google Scholar

[11] X. Shen, M. Liu, F. Song, X. Meng. Structural evolution and magnetic properties of SrFe12O19 nanofibers by electrospinning. J Sol-Gel Sci Technol. 53 (2010) 448-453.

DOI: 10.1007/s10971-009-2119-7

Google Scholar

[12] C. J. Li, B. N. Huang, J. N. Wang, Effect of aluminum substitution on microstructure and magnetic properties of electrospun BaFe12O19 nanofibers, J. Mater. Sci. 48(4) (2013) 1702-1710.

DOI: 10.1007/s10853-012-6928-7

Google Scholar

[13] K. K. Kim, L. L. Jin, Preparation of PPV nanotubes and nanorods and carbonized products derived there from, J. Nano Lett. 1(11)(2001) 631–636.

DOI: 10.1021/nl010055e

Google Scholar

[14] J. Joo, K. T. Park, M. Kim, Conducting polymer nanotube and nanowire synthesized by using nanoporous template: synthesis, charac-teristics and applications, Synth. Met. 7 (9) (2003) 135-136.

DOI: 10.1016/s0379-6779(02)01021-4

Google Scholar

[15] Q. Z. Cui, X. T. Dong, W. L. Yu. The latest progress of electrostatic spinning technology in the preparation of inorganic nanofibers, Rare Met. Mater. Eng. 35 (7) (2006) 1167-1171.

Google Scholar

[16] S. H. Zhang,X. T. Dong,S. Z. Xu. Preparation and characteristic of TiO2@SiO2 Submicron coaxial cable, J. Chem. Mater. 65 (23) (2007) 2675-2679.

Google Scholar

[17] X. T. Dong, J. X. Wang,Q. Z. Cui, Preparation of LaFeO3 porous hollow nanofibers by electrospinning, Int. J. Chem. 1 (1) (2009) 13-17.

Google Scholar

[18] C. L. Shao,H. Y. Guan,Y. C. Liu. A novel method for making ZrO2 nanofibres via an electrospinning technique, J. Cryst. Growth 267 (2004)380-384.

DOI: 10.1016/j.jcrysgro.2004.03.065

Google Scholar

[19] H. Q. Yu, H. W. Song, G. H. Pan, Preparation and Luminescent Properties of YVO4: Eu3+ Nanofibers by Electrospinning, J. Nanosci. Nano. Technol. 8 (3) (2008)1432-1436.

Google Scholar

[20] X. Q. Zheng, L. J. Fan, J. X. Wang, Preparation of ZnFe2O4 nanofibers[J]. Journal of changchun university of science and technology, 3 (2009) 403-406.

Google Scholar

[21] Y. J. Yang, X. S. Liu, F. J. Feng. Effects of barium content on microstructure and magnetic properties of Sr0. 7-xBaxLa0. 3Fe11. 8Zn0. 2O19 M type Hexaferrites. Materials Technology, Adv. Perform. Mater. 29 (3) (2014) 189.

Google Scholar

[22] G. F. Liu, R. H. Fan, K. L. Yan, X. A. Wang, K. Sun, C. B. Cheng, (2015, May). Magnetic Properties and Unusual Morphologies of Barium Ferrites Prepared by Electrospinning and Sol-Gel Auto-Combustion Method, Mater. Sci. Forum. 815 (2015) 141-146.

DOI: 10.4028/www.scientific.net/msf.815.141

Google Scholar

[23] B. N. Huang, C. J. Li, J. N. Wang. Template synthesis and magnetic properties of highly aligned barium hex a ferrite (BaFe12O19) nanofibers, J. Magn. Magn. Mater. 335 (2013) 28-31.

DOI: 10.1016/j.jmmm.2013.01.032

Google Scholar

[24] Z. J. Wang, Z. Y. Li, J. H. Sun, H. N. Zhang, W. Wang, W. Zheng, C. Wang, Improved hydrogen monitoring properties based on p-NiO/n-SnO2 heterojunction composite nanofibers, J. Phys. Chem. C 114 (2010) 6100-6105.

DOI: 10.1021/jp9100202

Google Scholar

[25] F. Z. Song, X. Q. Shen, J. Xiang, Y. W. Zhu. Characterization and magnetic properties of BaxSr1-xFe12O19(x=0-1) ferrite hollow fibers via gel-precursor transformation process, J. Alloys Compd. 507 (2010) 297-301.

DOI: 10.1016/j.jallcom.2010.07.184

Google Scholar

[26] J. L. Capitaneo, V. D. R. Caffarena, T. Ogasawara, Pinho, M. S. Pinho, Performance of radar absorbing nanocomposites by waveguide measurements, Mater. Res. 11(3) (2008) 319-324.

DOI: 10.1590/s1516-14392008000300015

Google Scholar

[27] W. Zhang, G. D. Li , Study of microwave absorbing properties of BaLaxFe12-xO19, Journal of Inner Mongolia university: natural science edition 36(3) (2005)313-315.

Google Scholar

[28] M. Ahmad, R. Grössinger, M. Kriegisch, F. Kubel, M. U. Rana, Magnetic and microwave attenuation behavior of Al-substituted Co2W hexaferrites synthesized by sol-gel autocombustion process, Curr. Appl. Phys. 12(6) (2012) 1413-1420.

DOI: 10.1016/j.cap.2012.02.038

Google Scholar