Tension-Compression Asymmetry in an Extruded Mg Alloy AZ31: Texture and Strain Rate Effects

Article Preview

Abstract:

The influence of initial texture and strain rate on the mechanical behavior, especially anisotropy and tension-compression asymmetry (TCA) in AZ31 was investigated. The results indicated that the TCA in AZ31 decreased as the strain rate increased, plastic anisotropy increased as the strain rate increased. After compression, the massive twins were observed in AZ31 samples compressed on the extruding direction, while the fraction of twins in samples compressed perpendicular to the ED was smaller.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-113

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Huang, K. Suzuki, Y. Chino, M. Mabuchi, J. Alloys Compd., Influence of initial texture on rolling and annealing textures of Mg–3Al–1Zn alloy sheets processed by high temperature rolling, 537 (2012) 80-86.

DOI: 10.1016/j.jallcom.2012.05.002

Google Scholar

[2] L. Wang, Y.M. Kim, J. Lee, B.S. You, Mater. Sci. Eng., A, Improvement in rollability of AZ91 magnesium alloy by carbon addition, 528 (2011) 943-949.

DOI: 10.1016/j.msea.2010.10.069

Google Scholar

[3] M. Kohzu, S. Nakatsuka, K. Higashi, Mater. Trans., Rolling Texture Evolution of AZ31 Magnesium Alloy Sheets by Isothermal Eccentric-Rolls Drawing, 49 (2008) 2096-(2099).

DOI: 10.2320/matertrans.l-mra2008820

Google Scholar

[4] T. -C. Chang, J. -Y. Wang, C. -M. O, S. Lee, J. Mater. Process. Technol., Grain refining of magnesium alloy AZ31 by rolling, 140 (2003) 588-591.

DOI: 10.1016/s0924-0136(03)00797-0

Google Scholar

[5] J. Jain, W.J. Poole, C.W. Sinclair, M.A. Gharghouri, Scripta Mater., Reducing the tension–compression yield asymmetry in a Mg–8Al–0. 5Zn alloy via precipitation, 62 (2010) 301-304.

DOI: 10.1016/j.scriptamat.2009.11.024

Google Scholar

[6] H. El Kadiri, J.C. Baird, J. Kapil, A.L. Oppedal, M. Cherkaoui, S.C. Vogel, Int. J. Plast., Flow asymmetry and nucleation stresses of twinning and non-basal slip in magnesium, 44 (2013) 111-120.

DOI: 10.1016/j.ijplas.2012.11.004

Google Scholar

[7] N. Chandola, R.A. Lebensohn, O. Cazacu, B. Revil-Baudard, R.K. Mishra, F. Barlat, International Journal of Solids and Structures, Combined effects of anisotropy and tension–compression asymmetry on the torsional response of AZ31 Mg, 58 (2015).

DOI: 10.1016/j.ijsolstr.2015.01.001

Google Scholar

[8] S. Kamrani, C. Fleck, Mater. Sci. Eng., A, Effects of calcium and rare-earth elements on the microstructure and tension–compression yield asymmetry of ZEK100 alloy, 618 (2014) 238-243.

DOI: 10.1016/j.msea.2014.09.023

Google Scholar

[9] F. Kabirian, A.S. Khan, International Journal of Solids and Structures, Anisotropic yield criteria in σ–τ stress space for materials with yield asymmetry, 67–68 (2015) 116-126.

DOI: 10.1016/j.ijsolstr.2015.04.006

Google Scholar

[10] G. -s. Huang, Y. -x. Wang, L. -f. Wang, T. -z. Han, F. -s. Pan, Trans. Nonferrous Met. Soc. China, Effects of grain size on shift of neutral layer of AZ31 magnesium alloy under warm condition, 25 (2015) 732-737.

DOI: 10.1016/s1003-6326(15)63658-5

Google Scholar

[11] P. Hidalgo-Manrique, V. Herrera-Solaz, J. Segurado, J. Llorca, F. Gálvez, O.A. Ruano, S.B. Yi, M.T. Pérez-Prado, Acta Mater., Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature, 92 (2015) 265-277.

DOI: 10.1016/j.actamat.2015.03.053

Google Scholar

[12] J. He, T. Liu, S. Xu, Y. Zhang, Mater. Sci. Eng., A, The effects of compressive pre-deformation on yield asymmetry in hot-extruded Mg–3Al–1Zn alloy, 579 (2013) 1-8.

DOI: 10.1016/j.msea.2013.04.115

Google Scholar

[13] E. Dogan, I. Karaman, G. Ayoub, G. Kridli, Mater. Sci. Eng., A, Reduction in tension–compression asymmetry via grain refinement and texture design in Mg–3Al–1Zn sheets, 610 (2014) 220-227.

DOI: 10.1016/j.msea.2014.04.112

Google Scholar

[14] D.L. Yin, J.T. Wang, J.Q. Liu, X. Zhao, J. Alloys Compd., On tension-compression yield asymmetry in an extruded Mg-3Al-1Zn alloy, 478 (2009) 789-795.

DOI: 10.1016/j.jallcom.2008.12.033

Google Scholar

[15] H. Watanabe, K. Ishikawa, Mater. Sci. Eng., A, Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy, 523 (2009) 304-311.

DOI: 10.1016/j.msea.2009.06.019

Google Scholar

[16] R. Korla, A.H. Chokshi, Scripta Mater., Strain-rate sensitivity and microstructural evolution in a Mg–Al–Zn alloy, 63 (2010) 913-916.

DOI: 10.1016/j.scriptamat.2010.06.047

Google Scholar

[17] H. Watanabe, K. Ishikawa, Mater. Sci. Eng., A, Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy, 523 (2009) 304-311.

DOI: 10.1016/j.msea.2009.06.019

Google Scholar