[1]
X. Huang, K. Suzuki, Y. Chino, M. Mabuchi, J. Alloys Compd., Influence of initial texture on rolling and annealing textures of Mg–3Al–1Zn alloy sheets processed by high temperature rolling, 537 (2012) 80-86.
DOI: 10.1016/j.jallcom.2012.05.002
Google Scholar
[2]
L. Wang, Y.M. Kim, J. Lee, B.S. You, Mater. Sci. Eng., A, Improvement in rollability of AZ91 magnesium alloy by carbon addition, 528 (2011) 943-949.
DOI: 10.1016/j.msea.2010.10.069
Google Scholar
[3]
M. Kohzu, S. Nakatsuka, K. Higashi, Mater. Trans., Rolling Texture Evolution of AZ31 Magnesium Alloy Sheets by Isothermal Eccentric-Rolls Drawing, 49 (2008) 2096-(2099).
DOI: 10.2320/matertrans.l-mra2008820
Google Scholar
[4]
T. -C. Chang, J. -Y. Wang, C. -M. O, S. Lee, J. Mater. Process. Technol., Grain refining of magnesium alloy AZ31 by rolling, 140 (2003) 588-591.
DOI: 10.1016/s0924-0136(03)00797-0
Google Scholar
[5]
J. Jain, W.J. Poole, C.W. Sinclair, M.A. Gharghouri, Scripta Mater., Reducing the tension–compression yield asymmetry in a Mg–8Al–0. 5Zn alloy via precipitation, 62 (2010) 301-304.
DOI: 10.1016/j.scriptamat.2009.11.024
Google Scholar
[6]
H. El Kadiri, J.C. Baird, J. Kapil, A.L. Oppedal, M. Cherkaoui, S.C. Vogel, Int. J. Plast., Flow asymmetry and nucleation stresses of twinning and non-basal slip in magnesium, 44 (2013) 111-120.
DOI: 10.1016/j.ijplas.2012.11.004
Google Scholar
[7]
N. Chandola, R.A. Lebensohn, O. Cazacu, B. Revil-Baudard, R.K. Mishra, F. Barlat, International Journal of Solids and Structures, Combined effects of anisotropy and tension–compression asymmetry on the torsional response of AZ31 Mg, 58 (2015).
DOI: 10.1016/j.ijsolstr.2015.01.001
Google Scholar
[8]
S. Kamrani, C. Fleck, Mater. Sci. Eng., A, Effects of calcium and rare-earth elements on the microstructure and tension–compression yield asymmetry of ZEK100 alloy, 618 (2014) 238-243.
DOI: 10.1016/j.msea.2014.09.023
Google Scholar
[9]
F. Kabirian, A.S. Khan, International Journal of Solids and Structures, Anisotropic yield criteria in σ–τ stress space for materials with yield asymmetry, 67–68 (2015) 116-126.
DOI: 10.1016/j.ijsolstr.2015.04.006
Google Scholar
[10]
G. -s. Huang, Y. -x. Wang, L. -f. Wang, T. -z. Han, F. -s. Pan, Trans. Nonferrous Met. Soc. China, Effects of grain size on shift of neutral layer of AZ31 magnesium alloy under warm condition, 25 (2015) 732-737.
DOI: 10.1016/s1003-6326(15)63658-5
Google Scholar
[11]
P. Hidalgo-Manrique, V. Herrera-Solaz, J. Segurado, J. Llorca, F. Gálvez, O.A. Ruano, S.B. Yi, M.T. Pérez-Prado, Acta Mater., Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature, 92 (2015) 265-277.
DOI: 10.1016/j.actamat.2015.03.053
Google Scholar
[12]
J. He, T. Liu, S. Xu, Y. Zhang, Mater. Sci. Eng., A, The effects of compressive pre-deformation on yield asymmetry in hot-extruded Mg–3Al–1Zn alloy, 579 (2013) 1-8.
DOI: 10.1016/j.msea.2013.04.115
Google Scholar
[13]
E. Dogan, I. Karaman, G. Ayoub, G. Kridli, Mater. Sci. Eng., A, Reduction in tension–compression asymmetry via grain refinement and texture design in Mg–3Al–1Zn sheets, 610 (2014) 220-227.
DOI: 10.1016/j.msea.2014.04.112
Google Scholar
[14]
D.L. Yin, J.T. Wang, J.Q. Liu, X. Zhao, J. Alloys Compd., On tension-compression yield asymmetry in an extruded Mg-3Al-1Zn alloy, 478 (2009) 789-795.
DOI: 10.1016/j.jallcom.2008.12.033
Google Scholar
[15]
H. Watanabe, K. Ishikawa, Mater. Sci. Eng., A, Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy, 523 (2009) 304-311.
DOI: 10.1016/j.msea.2009.06.019
Google Scholar
[16]
R. Korla, A.H. Chokshi, Scripta Mater., Strain-rate sensitivity and microstructural evolution in a Mg–Al–Zn alloy, 63 (2010) 913-916.
DOI: 10.1016/j.scriptamat.2010.06.047
Google Scholar
[17]
H. Watanabe, K. Ishikawa, Mater. Sci. Eng., A, Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy, 523 (2009) 304-311.
DOI: 10.1016/j.msea.2009.06.019
Google Scholar