[1]
T. Zhang, A. Inoue, T. Masumoto, Amorphous Zr-Al-TM(TM=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100K, Mater. Trans. JIM. 32 (1991) 1005-1010.
DOI: 10.2320/matertrans1989.32.1005
Google Scholar
[2]
A. Peker, W. L. Johnson, A highly processable metallic glass: Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5, Appl. Phys. Lett. 63(1993)2342-2344.
Google Scholar
[3]
R. Busch, Y. J. Kim, W. L. Johnson, Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5 alloy, J. Appl. Phys. 77(1995), 4039-4043.
Google Scholar
[4]
A. Inoue, T. Zhang, T. Masumoto, Preparation of Bulky amorphous Zr-Al-Co-Ni-Cu alloys by copper mold casting and their thermal and mechanical properties, Mater. Trans. JIM. 36(1995), 391-398.
DOI: 10.2320/matertrans1989.36.391
Google Scholar
[5]
A. Mitra, S. Palit, I. Chattoraj, Crystallization and magnetic behaviour of Fe-Nb-Cu-Si-B alloys, Philos. Mag. B. 77(1998)1681-1691.
DOI: 10.1080/014186398258465
Google Scholar
[6]
H. Y. Bai, C. Z. Tong, P. Zheng, Electrical resistivity in Zr48Nb8Cu12Fe8Be24 glassy and crystallized alloys, J. Appl. Phys. 95(2004) 1269-1273.
DOI: 10.1063/1.1637937
Google Scholar
[7]
O. Haruyama, N. Annoshita, N. Nishiyama, H. M. Kimura, A. Inoue, Structural relaxation in Pd-Cu-Ni-P metallic glasses, Mater. Sci. Eng. A. 375(2004)292-296.
DOI: 10.1016/j.msea.2003.10.253
Google Scholar
[8]
K. Lu, X. H. Zhang, Identification of crystal ucleation and growth in anamorphous FeZr2 alloy by means of electrical resistance measurements, Philos. Mag. Lett. 80(2000)797-805.
Google Scholar
[9]
A.K. Panda, I. Chattoraj, A. Mitra, Crystallization and magnetic properties of rapidly solidified Fe-Nb-M-Si-B (M=Cu, Mn, Pt), Mater. Sci. Eng. A. 304(2001)950-953.
DOI: 10.1016/s0921-5093(00)01603-8
Google Scholar
[10]
O. Haruyam, H. Kimura, N. Nishiyama, A. Inoue, Behavior of electrical resistivity through glass transition in Pd40Cu30Ni10P20 metallic glass, Mater. Sci. Eng. A. 304(2001)740-742.
DOI: 10.1016/s0921-5093(00)01602-6
Google Scholar
[11]
O. Haruyama, H. Kimura, N. Nishiyama, A. Inoue, J. Arai, Electrical resistivity and Mossbauer studies for the structural relaxation process in Pd-Cu-Ni-P glasses, Mater. Trans. JIM. 43(2002)1931-(1936).
DOI: 10.2320/matertrans.43.1931
Google Scholar
[12]
J. Guo, F. Q. Zu, Z. H. Chen, S. B. Zheng, Y. Yuan, Exploration of a new method in determining the glass transition temperature of BMGs by electrical resistivity, Solid State Commun. 135(2005)103-107.
DOI: 10.1016/j.ssc.2005.03.052
Google Scholar
[13]
S. J. Chung, K. T. Hong, M. R. Ok, J. K. Yoon, G. H. Kim, Y. S. Ji, B. S. Seong, K. S. Lee, Analysis of the crystallization of Zr41Ti14Cu12. 5Ni10Be22. 5 bulkmetallic glass using electrical resistivity measurement, Scr. Mater. 53(2005) 223-228.
DOI: 10.1016/j.scriptamat.2005.03.033
Google Scholar
[14]
Y. P. Wang, K. Lu, Electrical Resistance Measurement of Glass Transition and Crystallization Characteristics of Zr-Al-Cu-Ni Metallic Glasses, J. Mater. Sci. Technol. 18(2002)492-496.
Google Scholar
[15]
Z. Z. Wang, L. J. Liu, L. Li, X. Y. Li, F. Q. Zu, Structural relaxation of Zr60Al15Ni25 amorphous ribbon: experimental evidence of the electrical resistivity, Phase Trans. 86(2013)396-403.
DOI: 10.1080/01411594.2012.687107
Google Scholar
[16]
A. Inoue, T. Zhang, Fabrication of Bulk Glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method, Mater. Trans. JIM. 37(1996)185-187.
DOI: 10.2320/matertrans1989.37.185
Google Scholar
[17]
Q. He, J. K. Shang, E. Ma, J. Xu, Crack-resistance curve of a Zr-Ti-Cu-Al bulk metallic glass with extraordinary fracture toughness, Acta Mater. 60(2012)4940-4949.
DOI: 10.1016/j.actamat.2012.05.028
Google Scholar
[18]
C. T. Liu, M. F. Chisholm, M. K. Miller, Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy, Intermetallics, 10(2002)1105-1112.
DOI: 10.1016/s0966-9795(02)00131-0
Google Scholar
[19]
J. Zhang, Y. H. Wei, K. Q. Qiu, H. F. Zhang, M. X. Quan, Z. Q. Hu, Crystallization kinetics and pressure effect on crystallization of Zr55Al10Ni5Cu30 bulk metallic glass, Mater. Sci. Eng. A, 357(2003)386-391.
DOI: 10.1016/s0921-5093(03)00255-7
Google Scholar
[20]
J. H. Mooij, Electrical conduction in concentrated disordered transition metal alloys, Phys. Stat. Sol. 17(1973)521-530.
DOI: 10.1002/pssa.2210170217
Google Scholar
[21]
V. F. Gantmakher, G. I. Kulesko, V. M. Teplinsky, Resistivity of metallic systems with a strong dynamic disorder, Pramana-J. Phys. 28(1987)509-516.
DOI: 10.1007/bf03026688
Google Scholar
[22]
R. Gupta, A. Gupata, A. K. Nigam, G. Chandra, Effect of induced disorder on low temperature resistivity of some non-magnetic and magnetic metallic glasses, J. Alloys Compd. 326(2001)275-279.
DOI: 10.1016/s0925-8388(01)01283-x
Google Scholar
[23]
B. Y. Liu, F. Ye, Glass transition kinetics of La55Al25Ni10Cu10 bulk metallic glass by electrical resistivity measurement, Rare Met. 32(2013)359-362.
DOI: 10.1007/s12598-013-0089-y
Google Scholar
[24]
O. Haruyama, H. Kimura, N. Nishiyama, A. Inoue, Anomalous behavior of electrical resistivity in glass transition region of a bulk Pd40Ni40P20 metallic glass, Journal of Non-Crystalline Solids, 312(2002)552-556.
DOI: 10.1016/s0022-3093(02)01769-6
Google Scholar
[25]
H.W. Yang, J Guo, R.D. Li, J. Q. Wang, Thermal variation of electrical resistance of an Al85Ni5Y8Co2 metallic glass free of quenched-in nuclei, Journal of Non-Crystalline Solids, 355(2009)2205-2208.
DOI: 10.1016/j.jnoncrysol.2009.08.001
Google Scholar
[26]
W. Hofstetter, H. Sassik, R. Grossinger, R. Trausmuth, G. Vertesy, Determination of the onset of crystallization of amorphous materials using different methods, Mater. Sci. Eng. A, 226(1997)213-217.
DOI: 10.1016/s0921-5093(96)10620-1
Google Scholar
[27]
A. J. Kailath, K. Dutta, T. C. Alex, A. J. Mitra, Crystallization study of Cu56Zr7Ti37 metallic glass by electrical resistivity measurement, Mater. Sci. Technol. 27(2011)275-279.
DOI: 10.1016/s1005-0302(11)60062-5
Google Scholar