Correlation between Electrical Resistivity and the Structural Evolution of Zr-Based Bulk Amorphous Alloys

Article Preview

Abstract:

The electrical resistivity of three kinds of Zr-based bulk amorphous alloys as a function of continuous increasing temperature was measured by the direct current four-probe method. Combining with Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis, the correlation between the electrical resistivity and structural evolution of these amorphous alloys has been demonstrated. The experimental results showed that three amorphous alloys all had a small negative temperature coefficient of resistivity (TCR<-10-4 K-1) before crystallization. Little change of the electrical resistivity related with the glass transition process was observed, while the electrical resistivity decreased sharply once the crystallization occurred. The onset of crystallization determined by the electrical resistivity measurement was far lower than that by DSC. The different stages of crystallization behavior could be evidently identified by the change of the electrical resistivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-90

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Zhang, A. Inoue, T. Masumoto, Amorphous Zr-Al-TM(TM=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100K, Mater. Trans. JIM. 32 (1991) 1005-1010.

DOI: 10.2320/matertrans1989.32.1005

Google Scholar

[2] A. Peker, W. L. Johnson, A highly processable metallic glass: Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5, Appl. Phys. Lett. 63(1993)2342-2344.

Google Scholar

[3] R. Busch, Y. J. Kim, W. L. Johnson, Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5 alloy, J. Appl. Phys. 77(1995), 4039-4043.

Google Scholar

[4] A. Inoue, T. Zhang, T. Masumoto, Preparation of Bulky amorphous Zr-Al-Co-Ni-Cu alloys by copper mold casting and their thermal and mechanical properties, Mater. Trans. JIM. 36(1995), 391-398.

DOI: 10.2320/matertrans1989.36.391

Google Scholar

[5] A. Mitra, S. Palit, I. Chattoraj, Crystallization and magnetic behaviour of Fe-Nb-Cu-Si-B alloys, Philos. Mag. B. 77(1998)1681-1691.

DOI: 10.1080/014186398258465

Google Scholar

[6] H. Y. Bai, C. Z. Tong, P. Zheng, Electrical resistivity in Zr48Nb8Cu12Fe8Be24 glassy and crystallized alloys, J. Appl. Phys. 95(2004) 1269-1273.

DOI: 10.1063/1.1637937

Google Scholar

[7] O. Haruyama, N. Annoshita, N. Nishiyama, H. M. Kimura, A. Inoue, Structural relaxation in Pd-Cu-Ni-P metallic glasses, Mater. Sci. Eng. A. 375(2004)292-296.

DOI: 10.1016/j.msea.2003.10.253

Google Scholar

[8] K. Lu, X. H. Zhang, Identification of crystal ucleation and growth in anamorphous FeZr2 alloy by means of electrical resistance measurements, Philos. Mag. Lett. 80(2000)797-805.

Google Scholar

[9] A.K. Panda, I. Chattoraj, A. Mitra, Crystallization and magnetic properties of rapidly solidified Fe-Nb-M-Si-B (M=Cu, Mn, Pt), Mater. Sci. Eng. A. 304(2001)950-953.

DOI: 10.1016/s0921-5093(00)01603-8

Google Scholar

[10] O. Haruyam, H. Kimura, N. Nishiyama, A. Inoue, Behavior of electrical resistivity through glass transition in Pd40Cu30Ni10P20 metallic glass, Mater. Sci. Eng. A. 304(2001)740-742.

DOI: 10.1016/s0921-5093(00)01602-6

Google Scholar

[11] O. Haruyama, H. Kimura, N. Nishiyama, A. Inoue, J. Arai, Electrical resistivity and Mossbauer studies for the structural relaxation process in Pd-Cu-Ni-P glasses, Mater. Trans. JIM. 43(2002)1931-(1936).

DOI: 10.2320/matertrans.43.1931

Google Scholar

[12] J. Guo, F. Q. Zu, Z. H. Chen, S. B. Zheng, Y. Yuan, Exploration of a new method in determining the glass transition temperature of BMGs by electrical resistivity, Solid State Commun. 135(2005)103-107.

DOI: 10.1016/j.ssc.2005.03.052

Google Scholar

[13] S. J. Chung, K. T. Hong, M. R. Ok, J. K. Yoon, G. H. Kim, Y. S. Ji, B. S. Seong, K. S. Lee, Analysis of the crystallization of Zr41Ti14Cu12. 5Ni10Be22. 5 bulkmetallic glass using electrical resistivity measurement, Scr. Mater. 53(2005) 223-228.

DOI: 10.1016/j.scriptamat.2005.03.033

Google Scholar

[14] Y. P. Wang, K. Lu, Electrical Resistance Measurement of Glass Transition and Crystallization Characteristics of Zr-Al-Cu-Ni Metallic Glasses, J. Mater. Sci. Technol. 18(2002)492-496.

Google Scholar

[15] Z. Z. Wang, L. J. Liu, L. Li, X. Y. Li, F. Q. Zu, Structural relaxation of Zr60Al15Ni25 amorphous ribbon: experimental evidence of the electrical resistivity, Phase Trans. 86(2013)396-403.

DOI: 10.1080/01411594.2012.687107

Google Scholar

[16] A. Inoue, T. Zhang, Fabrication of Bulk Glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method, Mater. Trans. JIM. 37(1996)185-187.

DOI: 10.2320/matertrans1989.37.185

Google Scholar

[17] Q. He, J. K. Shang, E. Ma, J. Xu, Crack-resistance curve of a Zr-Ti-Cu-Al bulk metallic glass with extraordinary fracture toughness, Acta Mater. 60(2012)4940-4949.

DOI: 10.1016/j.actamat.2012.05.028

Google Scholar

[18] C. T. Liu, M. F. Chisholm, M. K. Miller, Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy, Intermetallics, 10(2002)1105-1112.

DOI: 10.1016/s0966-9795(02)00131-0

Google Scholar

[19] J. Zhang, Y. H. Wei, K. Q. Qiu, H. F. Zhang, M. X. Quan, Z. Q. Hu, Crystallization kinetics and pressure effect on crystallization of Zr55Al10Ni5Cu30 bulk metallic glass, Mater. Sci. Eng. A, 357(2003)386-391.

DOI: 10.1016/s0921-5093(03)00255-7

Google Scholar

[20] J. H. Mooij, Electrical conduction in concentrated disordered transition metal alloys, Phys. Stat. Sol. 17(1973)521-530.

DOI: 10.1002/pssa.2210170217

Google Scholar

[21] V. F. Gantmakher, G. I. Kulesko, V. M. Teplinsky, Resistivity of metallic systems with a strong dynamic disorder, Pramana-J. Phys. 28(1987)509-516.

DOI: 10.1007/bf03026688

Google Scholar

[22] R. Gupta, A. Gupata, A. K. Nigam, G. Chandra, Effect of induced disorder on low temperature resistivity of some non-magnetic and magnetic metallic glasses, J. Alloys Compd. 326(2001)275-279.

DOI: 10.1016/s0925-8388(01)01283-x

Google Scholar

[23] B. Y. Liu, F. Ye, Glass transition kinetics of La55Al25Ni10Cu10 bulk metallic glass by electrical resistivity measurement, Rare Met. 32(2013)359-362.

DOI: 10.1007/s12598-013-0089-y

Google Scholar

[24] O. Haruyama, H. Kimura, N. Nishiyama, A. Inoue, Anomalous behavior of electrical resistivity in glass transition region of a bulk Pd40Ni40P20 metallic glass, Journal of Non-Crystalline Solids, 312(2002)552-556.

DOI: 10.1016/s0022-3093(02)01769-6

Google Scholar

[25] H.W. Yang, J Guo, R.D. Li, J. Q. Wang, Thermal variation of electrical resistance of an Al85Ni5Y8Co2 metallic glass free of quenched-in nuclei, Journal of Non-Crystalline Solids, 355(2009)2205-2208.

DOI: 10.1016/j.jnoncrysol.2009.08.001

Google Scholar

[26] W. Hofstetter, H. Sassik, R. Grossinger, R. Trausmuth, G. Vertesy, Determination of the onset of crystallization of amorphous materials using different methods, Mater. Sci. Eng. A, 226(1997)213-217.

DOI: 10.1016/s0921-5093(96)10620-1

Google Scholar

[27] A. J. Kailath, K. Dutta, T. C. Alex, A. J. Mitra, Crystallization study of Cu56Zr7Ti37 metallic glass by electrical resistivity measurement, Mater. Sci. Technol. 27(2011)275-279.

DOI: 10.1016/s1005-0302(11)60062-5

Google Scholar