Influence of Annealing Treatment on Microstructure and Mechanical Properties of Fe-Cu-Si-Al Amorphous Composites

Article Preview

Abstract:

In this study, the bulk amorphous alloys with 3mm in diameter were prepared at different voltages adopting copper mould suction casting method by adding microelement Al to Fe-Cu-Si based amorphous alloy respectively. The microstructures, glass-forming ability, mechanical compressive properties of (Fe0.34Cu0.47Si0.19)95Al5 amorphous composites annealed in different temperature were investigated. The results showed that re-melting of master alloy refined the solidified microstructure and homogenize the composition and microstructure. Moreover, the microstructure was stable with the increase of re-melting times. After relaxation and annealing at low temperature the majority of residual thermal stress was released during annealing at low temperature, with the enlargement of short-range order of amorphous microstructure and the decrease of the most adjacent inter-atomic distance. After proper annealing treatment the hardness and thermal stability of alloy were improved, indicating that the annealing treatment could improve the properties of amorphous alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-75

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Pauly, G. Liu, S. Gorantla, G. Wang, U. Kühn, D.H. Kim, Criteria for tensile plasticity in Cu-Zr-Al bulk metallic glasses, Acta Mater. 58(2010) 4883-90.

DOI: 10.1016/j.actamat.2010.05.026

Google Scholar

[2] Schroers J, Nguyen T, Croopnick G. A, A novel metallic glass composite synthesis method, Scr Mater. 56(2007) 177-80.

DOI: 10.1016/j.scriptamat.2006.08.048

Google Scholar

[3] A. Inoue, T. Zhang, A. Takeuchi. Bulk amorphous alloys with high mechnical strength and good soft magnetic properties in Fe-TM-B(TM=Ⅳ-Ⅷ group transition metal) system, Applied Physics Letters. 71(1997) 464-466.

DOI: 10.1063/1.119580

Google Scholar

[4] A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method, Materials Transactions, JIM. 33(1992) 937-945.

DOI: 10.2320/matertrans1989.33.937

Google Scholar

[5] B Zhang, DQ Zhao, MX Pan, WH Wang, AL Greer, Amorphous metallic plastic, Phy Rev Lett. 94(2005) 205502-6.

Google Scholar

[6] N.H. Tariq, J.I. Akhter, B.A. Hasan,  M. Javed Hyder, Design induced plastic deformation in Zr-based bulk metallic glass, J Alloys Comp. 507(2010) 414-18.

DOI: 10.1016/j.jallcom.2010.07.202

Google Scholar

[7] WH Wang, The nature and properties of amorphous matter, Prog in Phys. 33(2013) 177-351.

Google Scholar

[8] D.C. Hofmann, Bulk metallic glasses and their composites: a brief history of diverging fields, J Mater. 13(2013) 517904-8.

Google Scholar

[9] M. Abbasi, R. Gholamipour , F. Shahri, Glass forming ability and mechanical properties of Nb-containing Cu-Zr-Al based bulk metallic glasses, Trans Nonferrous Met Soc China. 23(2013) 2037-41.

DOI: 10.1016/s1003-6326(13)62693-x

Google Scholar

[10] N. Khademiana , R. Gholamipourb, Study on microstructure and fracture behavior of tungsten wire reinforced Cu-based and Zr-based bulk metallic glass matrix composites, J Non-Cryst Solids. 365(2013) 75-84.

DOI: 10.1016/j.jnoncrysol.2012.12.030

Google Scholar

[11] Q. Wang, J. B. Qiang, J. H. Xia, J. Wu, Y. M. Wang, C. Dong, Cu-Zr-Al (Ti) bulk metallic glasses: Cluster selection rules and glass formation, Intermetallics. 15(2007) 711-15.

DOI: 10.1016/j.intermet.2006.10.025

Google Scholar

[12] S. Faghihi, F. Azari, H. Li, M.R. Bateni, J.A. Szpunar, H. Vali, M. Tabrizian, The significance of crystallographic texture of titanium alloy substrates on pre-osteoblast responses. Biomaterials, 27(2006) 3532-3539.

DOI: 10.1016/j.biomaterials.2006.02.027

Google Scholar

[13] H. A Davies, J. B Hull, An amorphous phase in a splat-quenched A1-17. 3 at %Cu alloy, Scripta Metallurgica. 6(1972) 241–245.

DOI: 10.1016/0036-9748(72)90174-3

Google Scholar

[14] W. Jiao, H. F. Li, K. Zhao, H.Y. Bai, Y. B. Wang, Y.F. Zheng, W.H. Wang, Development of CaZn based glassy alloys as potential biodegradable bone graft substitute, J Non-cryst solids. 357(2011) 3830-3840.

DOI: 10.1016/j.jnoncrysol.2011.08.003

Google Scholar

[15] Y. Zhang, X. Yang, K. P. Liaw, Alloy design and properties optimization of high-entropy alloys, JOM. 64(2012) 830.

DOI: 10.1007/s11837-012-0366-5

Google Scholar