[1]
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
Google Scholar
[2]
B. Cator, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218.
Google Scholar
[3]
X.D. Xu, P. Liu, S. Guo, A. Hirata, T. Fujita, T.G. Nieh, C.T. Liu, M.W. Chen, Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0. 5 high-entropy alloy, Acta Mater. 84 (2015) 145-152.
DOI: 10.1016/j.actamat.2014.10.033
Google Scholar
[4]
Y. Zou, Soumyadipta Maiti, Walter Steurer, Ralph Spolenak, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy, Acta Mater. 65 (2014) 85-97.
DOI: 10.1016/j.actamat.2013.11.049
Google Scholar
[5]
Bernd Gludovatz, Anton Hohenwarter, Dhiraj Catoor, Edwin H. Chang, Easo P. George, Robert O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345 (2014) 1153-1158.
DOI: 10.1126/science.1254581
Google Scholar
[6]
W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Effect of Nb addition on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics 60 (2015) 1-8.
DOI: 10.1016/j.intermet.2015.01.004
Google Scholar
[7]
C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A 36A (2005) 1263-1267.
Google Scholar
[8]
B. Ren, Z. X. Liu, D.M. Li, L. Shi, B. Cai, M.X. Wang. Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J. Alloys Compd. 493 (2010) 148-53.
DOI: 10.1016/j.jallcom.2009.12.183
Google Scholar
[9]
Y.J. Zhou, Y. Zhang, Y. L . Wang, G.L. Chen. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90 (2007) 181904.
DOI: 10.1063/1.2734517
Google Scholar
[10]
K.B. Zhang, Z.Y. Fu, Effect of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys, Intermetallics 22 (2012) 24-32.
DOI: 10.1016/j.intermet.2011.10.010
Google Scholar
[11]
J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62 (2014) 105-113.
DOI: 10.1016/j.actamat.2013.09.037
Google Scholar
[12]
C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A 36 (2005) 881-893.
DOI: 10.1007/s11661-005-0283-0
Google Scholar
[13]
Y. Dong, K.Y. Zhou, Y.P. Lu, X.X. Gao, T.M. Wang, T.J. Li, Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy, Mater. Des. 57 (2014) 67-72.
DOI: 10.1016/j.matdes.2013.12.048
Google Scholar
[14]
B.S. Li, Y.P. Wang, M.X. Ren, C. Yang, H.Z. Fu, Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy, Mater. Sci. Eng. A 498 (2008) 482-486.
DOI: 10.1016/j.msea.2008.08.025
Google Scholar
[15]
L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, L. Zhou, Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy, Intermetallics 17 (2009) 266-269.
DOI: 10.1016/j.intermet.2008.08.012
Google Scholar
[16]
K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. J. Alloys & Compd. 502 (2010) 295-299.
DOI: 10.1016/j.jallcom.2009.11.104
Google Scholar
[17]
http: /www. webelements. com.
Google Scholar
[18]
J. Wang, Z. Zhou, J. Xu, Y. Wang, Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi(Nb) high entropy alloys. J. Magn. Magn. Mater. 355 (2014) 58-64.
DOI: 10.1016/j.jmmm.2013.11.049
Google Scholar