Microstructure and Mechanical Properties of a New Refractory HfNbSi0.5TiVZr High Entropy Alloy

Article Preview

Abstract:

A new refractory alloy HfNbSi0.5TiVZr was synthesized by induction levitation melting with the aim to achieve an excellent strength and toughness balance of the Hf-Nb-Ti-Zr based alloy. The as-cast alloy with density of ρ=7.75g/cm3 and microhardness of Hv=464 had the microstructure consisting of bcc solid solution with little vanadium rich phase and fine intermetallic phase presented dendritic structure. Mixing entropy and formation enthalpy can explain this behavior. After heat treatment at 1373K for 4 h, no new phase come into being but elements solute more fully. Compressive yield strength of the alloy gradually decreased from 1540MPa at room temperature to 371MPa at 1073K in as-cast state and decreased from 1483MPa at room temperature to 102MPa at 1073K after annealed. Comparing with the similar high entropy alloys, the structure combining silicide and continuous solid phase have a great benefit to the balance of strength and ductility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-84

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.P. BEWLAY, M.R. JACKSON, J.C. ZHAO, et al, A review of very high temperature Nb-silicide-based composites, Metallurgical and materials transactions A, 34A(2003) 2043-(2052).

DOI: 10.1007/s11661-003-0269-8

Google Scholar

[2] Bewlay B P, M.R. JACKSON, J.C. ZHA, et al, Ultrahigh-temperature Nb-silidide-based composites, MRS Bull, 28(2003) 646-653.

DOI: 10.1557/mrs2003.192

Google Scholar

[3] Geng J, Tsakiropoulos P, Shao G S, Oxidation of Nb-Si-Cr-Al in suit composites with Mo, Ti and Hf additions, Mater Sci Eng A, 441(2006) 26-38.

DOI: 10.1016/j.msea.2006.08.093

Google Scholar

[4] Bewlay B P, Jackson M R,Lipsitt H A, The balance of mechanical and environmental properties of a multielement Niobium-Niobium silicide-based in situ composite, Metallurgical and Materials Transactions A, 27(1996) 3801-3808.

DOI: 10.1007/bf02595629

Google Scholar

[5] J. W. Yeh, S. K. Chen, S. J. Lin, et al, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Adv. Eng. Mater, 6(2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[6] Y. J. Zhou, Y. Zhang, Y. L. Wang, et al, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, APPLIED PHYSICS LETTERS, 90(2007) 1-3.

DOI: 10.1063/1.2734517

Google Scholar

[7] Chen Min, Liu Yuan et al, Microstructure and mechanical properties of AlTiFeNiCuCrx high-entropy alloy with multi-principal elements, Acta Metallurgica Sinica, 43 (2007) 1020-1024.

Google Scholar

[8] Yong Zhang, Ting Ting Zuo , Zhi Tang , Michael C. Gao , Karin A. Dahmen, Peter K. Liaw, Zhao Ping Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science 61 (2014) 1–93.

DOI: 10.1016/j.pmatsci.2013.10.001

Google Scholar

[9] M. Feuerbacher , M. Heidelmann, C. Thomas, Plastic deformation properties of Zr–Nb–Ti– Ta–Hf high-entropy alloys, Philosophical Magazine, 95 (2015) 1221–1232.

DOI: 10.1080/14786435.2015.1028506

Google Scholar

[10] O. N. Senkov, J. M. Scott, S. V. Senkova, et al, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, Journal of Alloys and Compounds, 509(2011) 6043-6048.

DOI: 10.1016/j.jallcom.2011.02.171

Google Scholar

[11] O. N. Senkov, J. M. Scott, S. V. Senkova, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J Mater Sci, 47(2012) 4602-4074.

DOI: 10.1007/s10853-012-6260-2

Google Scholar

[12] Y.D. Wu, Y.H. Cai, T. Wang, et al, A refractoryHf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mterials Letters, 130 (2014) 277-280.

DOI: 10.1016/j.matlet.2014.05.134

Google Scholar

[13] O.N. Senkov, S.V. Senkova, D.B. Miracle, et al, Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Materials Science &Engineering A, 565(2013) 51-62.

DOI: 10.1016/j.msea.2012.12.018

Google Scholar

[14] Chun-Ming Lin, Chien-Chang Juan, Chia-Hsiu Chang, et al, Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys, Journal of Alloys and Compounds, 624(2015) 100-107.

DOI: 10.1016/j.jallcom.2014.11.064

Google Scholar

[15] Yang X, Zhang Y. Prediction of high-entropy stabilized solid solution in multi-component alloys, Mater Phys Chem, 132(2012): 233–238.

DOI: 10.1016/j.matchemphys.2011.11.021

Google Scholar

[16] Sheng Guo, C. T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Progress in Natural Science: Materials International , 21(2011) 433−446.

DOI: 10.1016/s1002-0071(12)60080-x

Google Scholar

[17] Akira Takeuchi, Akihisa Inoue, Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys, Materials Transactions, 41 (2000) 1372-1378.

DOI: 10.2320/matertrans1989.41.1372

Google Scholar

[18] N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, et al, Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, Materials Letters, 142(2015) 153-155.

DOI: 10.1016/j.matlet.2014.11.162

Google Scholar

[19] O. N. Senkov, G.B. Wilks, J.M. Scott, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20 Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011) 698-706.

DOI: 10.1016/j.intermet.2011.01.004

Google Scholar

[20] O. N. Senkov, G.B. Wilks, D.B. Miracle, Refractory high-entropy alloys, Intermetallics, 18 (2010): 1758-1765.

DOI: 10.1016/j.intermet.2010.05.014

Google Scholar