Effect of Ta Addition on Structural Evolution and Mechanical Properties of the CoFeNi2W0.5 High Entropy Alloy

Article Preview

Abstract:

A series of CoFeNi2W0.5Tax (x = 0-0.6) high entropy alloys (HEAs) were synthesized by arc melting to investigate the alloying effect of Ta element on the microstructure and mechanical properties of the CoFeNi2W0.5 alloy system. Phase constitution, microstructure and mechanical properties of the alloys were analyzed by X-ray diffraction (XRD), scanning electron microscopes (SEM), Vickers hardness and compressive test. It was found that when x = 0, the alloy consists of a single-phase face-centered cubic (FCC) solid solution structure and exhibit excellent ductility, the compressive plastic elongation of which can reach 80% without fracture. While with increasing Ta content, the brittle Co2Ta-type Laves phase appears which leads to a decrease of the plastic strain and an increase of the yield strength, and the Vickers hardness shows an obvious increase from HV 179.5 to HV 753.2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-39

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.O.F. Hayama, P.N. Andrade, A. Cremasco, R.J. Contieri, C.R.M. Afonso, R. Caram, Effects of composition and heat treatment on the mechanical behavior of Ti–Cu alloys, Mater. Des. 55(2014) 1006-1013.

DOI: 10.1016/j.matdes.2013.10.050

Google Scholar

[2] Y. Wu, H. Liao, K. Zhou, J. Yang, Effect of texture evolution on mechanical properties of near eutectic Al–Si–Mg alloy with minor addition of Zr/V during hot extrusion, Mater. Des. 57(2014) 416-420.

DOI: 10.1016/j.matdes.2013.12.068

Google Scholar

[3] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6(2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[4] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(2014) 1153-1158.

DOI: 10.1126/science.1254581

Google Scholar

[5] O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Accelerated exploration of multi-principal element alloys with solid solution phases, Nat. Commun. 6(2015) 6529.

DOI: 10.1038/ncomms7529

Google Scholar

[6] Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys, Sci. Rep. 4(2014) 6200.

DOI: 10.1038/srep06200

Google Scholar

[7] P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, J. Dolinšek, Discovery of a Superconducting High-Entropy Alloy, Phys. Rev. Lett. 113(2014) 107001.

DOI: 10.1103/physrevlett.113.107001

Google Scholar

[8] Z.K. Liu, Y. Wang, S.L. Shang, Thermal Expansion Anomaly Regulated by Entropy, Sci. Rep. 4(2014) 7043.

Google Scholar

[9] L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J.C. Neuefeind, Z. Tang, P.K. Liaw, Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy, Nat. Commun. 6(2015).

DOI: 10.1038/ncomms6964

Google Scholar

[10] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(2011) 698-706.

DOI: 10.1016/j.intermet.2011.01.004

Google Scholar

[11] Y.X. Zhuang, W.J. Liu, Z.Y. Chen, H.D. Xue, J.C. He, Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys, Mater. Sci. Eng. A 556(2012) 395-399.

DOI: 10.1016/j.msea.2012.07.003

Google Scholar

[12] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci. 47(2012) 4062-4074.

DOI: 10.1007/s10853-012-6260-2

Google Scholar

[13] C. Huang, Y. Zhang, R. Vilar, J. Shen, Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate, Mater. Des. 41(2012) 338-343.

DOI: 10.1016/j.matdes.2012.04.049

Google Scholar

[14] Z. Tang, L. Huang, W. He, P. Liaw, Alloying and Processing Effects on the Aqueous Corrosion Behavior of High-Entropy Alloys, Entropy 16(2014) 895-911.

DOI: 10.3390/e16020895

Google Scholar

[15] M. Chuang, M. Tsai, W. Wang, S. Lin, J. W Yeh, Microstructure and wear behavior of AlxCo1. 5CrFeNi1. 5Tiy high-entropy alloys, Acta. Mater. 59(2011) 6308-6317.

DOI: 10.1016/j.actamat.2011.06.041

Google Scholar

[16] H.Y. Ding, Y. Shao, P. Gong, J.F. Li, K.F. Yao,A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability,Materials letters, 125(2014) 151-153.

DOI: 10.1016/j.matlet.2014.03.185

Google Scholar

[17] H.Y. Ding, K.F. Yao, High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass, Journal of Non-Crystalline Solids, 364(2013) 9-12. ).

DOI: 10.1016/j.jnoncrysol.2013.01.022

Google Scholar

[18] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd. 509(2011) 6043-6048.

DOI: 10.1016/j.jallcom.2011.02.171

Google Scholar

[19] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18(2010) 1758-1765.

DOI: 10.1016/j.intermet.2010.05.014

Google Scholar

[20] C. Kittel, Introduction to Solid State Physics, seventh ed., Wiley, New York, (1996).

Google Scholar