[1]
X.Y. Zhang, Z.Z. Yuan, X.L. Feng, et al, Homogeneous viscous flow behavior of a Cu-Zr based bulk metallic glass composites, Materials Science and Engineering A. 620 (2015) 352-358.
DOI: 10.1016/j.msea.2014.09.080
Google Scholar
[2]
W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Progress in Materials Science. 57 (2012) 487-656.
DOI: 10.1016/j.pmatsci.2011.07.001
Google Scholar
[3]
H.S. Arora, A.V. Aditya, S. Mukherjee, Structural relaxation driven increase in elastic modulus for a bulk metallic glass, Journal of Applied Physics. 117 (2015) 014902-1-014902-5.
DOI: 10.1063/1.4905145
Google Scholar
[4]
D. Lahiri, J. Karp, A.K. Keshri, et al, Scratch induced deformation behavior of hafnium based bulk metallic glass at multiple load scales, Journal of Non-Crystalline Solids. 410 (2015) 118-126.
DOI: 10.1016/j.jnoncrysol.2014.12.010
Google Scholar
[5]
R. Maaβ, D. Klaumünzer, J.F. Löffer, Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass, Acta Materialia, 59 (2011) 3205-3213.
DOI: 10.1016/j.actamat.2011.01.060
Google Scholar
[6]
S. Yugeswaran, A. Kobayashi, K. Suresh, et al, Wear behavior of gas tunnel type plasma sprayed Zr-based metallic glass composite coatings, Applied Surface Science. 258 (2012) 8460-8468.
DOI: 10.1016/j.apsusc.2012.04.047
Google Scholar
[7]
B.A. Sun, S. Pauly, J. Tan, et al, Serrated flow and stick-slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass, Acta Materialia. 60 (2012) 4160-4171.
DOI: 10.1016/j.actamat.2012.04.013
Google Scholar
[8]
N. Li, T. Xia, L.P. Heng, et al, Super hydrophobic Zr-based metallic glass surface with high adhesive force, Applied Physics Letters. 102 (2013) 251603-1-251603-4.
DOI: 10.1063/1.4812480
Google Scholar
[9]
R.D. Conner, Y. Li, W.D. Nix, et al, Shear band spacing under bending of Zr-based metallic glass plates, Acta Materialia. 52 (2004) 2429-2434.
DOI: 10.1016/j.actamat.2004.01.034
Google Scholar
[10]
L.K. Gao, S.D. Feng, L. Qi, et al, Effects of nanocrystals on evolution behavior of shear transformation zones in Zr85Cu15 metallic glasses, Journal of Non-Crystalline Solids. 419 (2015) 34-38.
DOI: 10.1016/j.jnoncrysol.2015.03.032
Google Scholar
[11]
N.H. Tariq, J.I. Akhter, A. Khalid, et al, Effect of prior compression treatment on the deformation behavior of Zr based bulk metallic glass, Materials Chemistry and Physics. 143 (2014) 1384-1390.
DOI: 10.1016/j.matchemphys.2013.11.050
Google Scholar
[12]
L.F. Liu, L.H. Dai, Y.L. Bai, et al, Behavior of multiple shear bands in Zr-based bulk metallic glass, Materials Chemistry and Physics. 93 (2005) 174-177.
DOI: 10.1016/j.matchemphys.2005.03.011
Google Scholar
[13]
W.D. Luo, B. Yang, G.L. Chen, Effect of Ar+ ion irradiation on the microstructure and properties of Zr-Cu-Fe-Al bulk metallic glass, Scripta Materialia. 64 (2011) 625-628.
DOI: 10.1016/j.scriptamat.2010.12.004
Google Scholar
[14]
T. Nagase, M. Nakamura, Y. Umakoshi, Electron irradiation induced nano-crystallization in Zr66. 7Ni33. 3 amorphous alloy and Zr60Al15Ni25 metallic glass, Intermetallics. 15 (2007) 211-224.
DOI: 10.1016/j.intermet.2006.05.009
Google Scholar
[15]
R. Raghavan, R. Ayer, H.W. Jin, et al, Effect of shot peening on the fatigue life of a Zr-based bulk metallic glass, Scripta Materialia. 59 (2008) 167-170.
DOI: 10.1016/j.scriptamat.2008.03.009
Google Scholar
[16]
A. King, A. Steuwear, C. Woodward, et al, Effects of fatigue and fretting on residual stresses introduced by laser shock peening, Materials Science and Engineering A. 435-346 (2006) 12-18.
DOI: 10.1016/j.msea.2006.07.020
Google Scholar
[17]
N.F. Ren, H.M. Yang, S.Q. Yuan, et al, High temperature mechanical properties and surface fatigue behavior improving of steel alloy via laser shock peening, Materials and Design. 53 (2014) 452-456.
DOI: 10.1016/j.matdes.2013.07.009
Google Scholar
[18]
R. Voothaluru, C.R. Liu, G.J. Cheng, Finite element analysis of the variation in residual stress distribution in laser shock peening of steels, Journal of Manufacturing Science and Engineering. 134 (2012) 061010-1-061010-8.
DOI: 10.1115/1.4007780
Google Scholar
[19]
C. Correa, L.R. Lara, M. Díaz, et al, Effect of advancing direction on fatigue life of 316L stainless steel specimens treated by double-sided laser shock peening, International Journal of Fatigue. 79 (2015) 1-9.
DOI: 10.1016/j.ijfatigue.2015.04.018
Google Scholar
[20]
U.S. Santana, C.R. González, G.G. Rosas, et al, Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing, Wear. 260 (2006) 847-854.
DOI: 10.1016/j.wear.2005.04.014
Google Scholar
[21]
H. Lim, P. Kim, H. Jeong, et al, Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening, Journal of Materials Processing Technology. 212 (2012) 1347-1354.
DOI: 10.1016/j.jmatprotec.2012.01.023
Google Scholar
[22]
R. Fabbro, J. Fournier, P. Ballard, et al, Physical study of laser-produced plasma in confined geometry, Journal of Applied Physics, 68(2) (1990) 775-784.
DOI: 10.1063/1.346783
Google Scholar
[23]
W. Zhang, Y. L. Yao, Micro scale laser shock processing of metallic components, Journal of Manufacturing Science and Engineering. 124 (2002) 369-378.
DOI: 10.1115/1.1445149
Google Scholar
[24]
Y.H. Zhu, J. Fu, C. Zheng, et al, Influence of laser shock peening on morphology and mechanical property of Zr-based bulk metallic glass, Optics and Lasers in Engineering. 74 (2015) 75-79.
DOI: 10.1016/j.optlaseng.2015.05.012
Google Scholar