Damage Characteristics of Zr-Based Metallic Glasses under Helium Ions Irradiation

Article Preview

Abstract:

Metallic glasses (MGs) exhibit extremely high strength and superior resistance to corrosion. They are also supposed to be resistant against displacive irradiation due to their inherent disordered structure, and thereby are viewed as potential candidates for applications in irradiation environments. However, the structures and properties evolution of metallic glasses, especially bulk metallic glasses (BMGs), under irradiation has not been fully understood up to now. In this work, the structural stability and damage characteristics of a Zr-based BMG under helium ions irradiation environment were investigated. Meanwhile, the effect of structural relaxation and crystallization on the irradiation response of the BMG was also studied. Results show that the BMG reserves the amorphous structure within the studied range of fluence, and exhibits better irradiation resistance compared to that of the crystalline alloys. In our opinion, the initial free volume concentration affects the damage morphology of the BMG, while partial crystallization will lead to significantly embrittlement under irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-27

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Klement, R.H. Willens, P. Duwez, Non-crystalline structure in solidified gold-silicon alloys, Nature. 187(1960) 869–870.

DOI: 10.1038/187869b0

Google Scholar

[2] W.J. Weber, R.C. Ewing, C.A. Angell, G.W. Arnold, A.N. Cormack, J.M. Delaye, D.L. Griscom, L.W. Hobbs, A. Navrotsky, D.L. Price, A.M. Stoneham, W.C. Weinberg, Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition, J. Mater. Res. 12(1997).

DOI: 10.1557/jmr.1997.0266

Google Scholar

[3] A. Inoue, X.M. Wang, W. Zhang, Developments and applications of bulk metallic glasses, Rev. Adv. Mater. Sci. 18(2008) 1–9.

Google Scholar

[4] A. Greer, Y. Cheng, E. Ma, Shear bands in metallic glasses, Mater. Sci. Eng. R. 74(2013) 71–132.

Google Scholar

[5] M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, R.O. Ritchie, A damage-tolerant glass, Nat. Mater. 10(2011) 123–128.

DOI: 10.1038/nmat2930

Google Scholar

[6] W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng. R. 44(2004) 45-89.

Google Scholar

[7] A.G. Perez-Bergquist, H.B. Bei, K.J. Leonard, Y.W. Zhang, S.J. Zinkle, Effects of ion irradiation on Zr52. 5Cu17. 9Ni14. 6Al10Ti5 (BAM-11) bulk metallic glass, Intermetallics. 53(2014) 62-66.

DOI: 10.1016/j.intermet.2014.04.016

Google Scholar

[8] X.N. Zhang, X.X. Mei, X. Ma, Y.M. Wang, J.B. Qiang, Y.N. Wang, Ar12+ induced irradiation damage in bulk metallic glass (Cu47Zr45Al8)98. 5Y1. 5, Chin. Phys. Lett. 32(2015) 026801.

DOI: 10.1088/0256-307x/32/2/026801

Google Scholar

[9] F.Q. Gong, J. Wen, Y.J. Zhao, J.B. Qiang, Y.M. Wang, X.X. Mei, C. Dong, X.H. Wang, Stable reflectivity of bulk metallic glass mirrors for ITER optical diagnostic through an irradiation-induced self-recovery mechanism, J. Nucl. Mater. 429(2012).

DOI: 10.1016/j.jnucmat.2012.05.046

Google Scholar

[10] Z. Hu, Z.Q. Zhao, Y.D. Wu, T. Lu, J.S. Xing, B.C. Wei, Surface features of Zr-based and Ti-based metallic glasses by ion irradiation, Vacuum. 89(2013) 142-146.

DOI: 10.1016/j.vacuum.2012.03.006

Google Scholar

[11] Z. Hu, Z.Q. Zhao, Y.P. Hu, J.S. Xing, T. Lu, B.C. Wei, Effect of ion irradiation on mechanical behaviors of Ti40Zr25Be30Cr5 bulk metallic glass, Mater. Res-Ibero-am. J. 15(2012) 713-717.

DOI: 10.1590/s1516-14392012005000047

Google Scholar

[12] K. Morishita, R. Sugano, B.D. Wirth, MD and KMC modeling of the growth and shrinkage mechanisms of helium-vacancy clusters in Fe, J. Nucl. Mater. 323(2003) 243-250.

DOI: 10.1016/j.jnucmat.2003.08.019

Google Scholar

[13] B. Wang, X.X. Mei, W.J. Hou, Y.N. Wang, Z.G. Wang, C. Dong, Behavior of high resistance to He2+ induced irradiation damage in metallic glass, Nucl. Instrum. Meth. B. 312(2013) 84-89.

DOI: 10.1016/j.nimb.2013.07.009

Google Scholar

[14] W.J. Hou, X.X. Mei, Z.G. Wang, Y.N. Wang, Resistance to He2+ irradiation damage in metallic glass Fe80Si7. 43B12. 57, Nucl. Instrum. Meth. B. 342(2015) 221-227.

Google Scholar

[15] B. Wang, X.X. Mei, H.R. Zhang, W.J. Hou, Y.N. Wang, Z.G. Wang, C. Dong, Resistance to He2+ induced irradiation damage in metallic glass Zr64Cu17. 8Ni10. 7Al7. 5, J. Nucl. Mater. 444(2014) 342-348.

DOI: 10.1016/j.jnucmat.2013.09.058

Google Scholar

[16] Q. Xu, K. Sato, T. Yoshiie, Nucleation of He bubbles in amorphous FeBSi alloy irradiated with He ions, Phil. Mag. Lett. 92(2012) 527-533.

DOI: 10.1080/09500839.2012.693635

Google Scholar

[17] M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method of calculating displacement dose rates, Nucl. Eng. Des. 33(1975) 50-54.

DOI: 10.1016/0029-5493(75)90035-7

Google Scholar

[18] D.J. Bacon, A.F. Calder, F. Gao, V.G. Kapinos, S.J. Wooding, Computer-simulation of defect production by displacement cascades in metals, Nucl. Instrum. Meth. B. 102(1995) 37–46.

DOI: 10.1016/0168-583x(95)80114-2

Google Scholar

[19] C.H. Zhang, J.S. Jang, Y.T. Yang, Y. Song, Y.M. Sun, H.D. Cho, Y.F. Jin, A study of the suppression of the high-temperature helium embrittlement in an oxide-particle dispersion strengthened alloy, Chin. Sci. Bull. 53(2008) 3416–3421.

DOI: 10.1007/s11434-008-0446-7

Google Scholar

[20] P. Trocellier, S. Agarwal, S. Miro, A review on helium mobility in inorganic materials, J. Nucl. Mater. 445(2014) 128-142.

DOI: 10.1016/j.jnucmat.2013.10.061

Google Scholar

[21] R.D. Daniels, Correlation of hydrogen evolution with surface blistering in proton-irradiated aluminum, J. Appl. Phys. 42(1971) 417.

DOI: 10.1063/1.1659613

Google Scholar

[22] J.H. Evans, An interbubble fracture mechanism of blister formation on helium-irradiated metals, J. Nucl. Mater. 68(1977) 129-140.

DOI: 10.1016/0022-3115(77)90232-x

Google Scholar

[23] E. P. EerNisse, S. T. Picraux, Role of integrated lateral stress in surface deformation of He-implanted surfaces, J. Appl. Phys. 48(1977) 9-17.

DOI: 10.1063/1.323332

Google Scholar

[24] P. Murali, U. Ramamurty, Embrittlement of a bulk metallic glass due to sub-T-g annealing, Acta Mater. 53(2005) 1467-1478.

DOI: 10.1016/j.actamat.2004.11.040

Google Scholar

[25] Á. Révész, A. Concustell, L.K. Varga, S. Suriñach, M.D. Baró, Influence of the wheel speed on the thermal behaviour of Cu60Zr20Ti20 alloys, Mater. Sci. Eng. A. 375(2004) 776-780.

DOI: 10.1016/j.msea.2003.10.151

Google Scholar