[1]
W. Klement, R.H. Willens, P. Duwez, Non-crystalline structure in solidified gold-silicon alloys, Nature. 187(1960) 869–870.
DOI: 10.1038/187869b0
Google Scholar
[2]
W.J. Weber, R.C. Ewing, C.A. Angell, G.W. Arnold, A.N. Cormack, J.M. Delaye, D.L. Griscom, L.W. Hobbs, A. Navrotsky, D.L. Price, A.M. Stoneham, W.C. Weinberg, Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition, J. Mater. Res. 12(1997).
DOI: 10.1557/jmr.1997.0266
Google Scholar
[3]
A. Inoue, X.M. Wang, W. Zhang, Developments and applications of bulk metallic glasses, Rev. Adv. Mater. Sci. 18(2008) 1–9.
Google Scholar
[4]
A. Greer, Y. Cheng, E. Ma, Shear bands in metallic glasses, Mater. Sci. Eng. R. 74(2013) 71–132.
Google Scholar
[5]
M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, R.O. Ritchie, A damage-tolerant glass, Nat. Mater. 10(2011) 123–128.
DOI: 10.1038/nmat2930
Google Scholar
[6]
W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Mater. Sci. Eng. R. 44(2004) 45-89.
Google Scholar
[7]
A.G. Perez-Bergquist, H.B. Bei, K.J. Leonard, Y.W. Zhang, S.J. Zinkle, Effects of ion irradiation on Zr52. 5Cu17. 9Ni14. 6Al10Ti5 (BAM-11) bulk metallic glass, Intermetallics. 53(2014) 62-66.
DOI: 10.1016/j.intermet.2014.04.016
Google Scholar
[8]
X.N. Zhang, X.X. Mei, X. Ma, Y.M. Wang, J.B. Qiang, Y.N. Wang, Ar12+ induced irradiation damage in bulk metallic glass (Cu47Zr45Al8)98. 5Y1. 5, Chin. Phys. Lett. 32(2015) 026801.
DOI: 10.1088/0256-307x/32/2/026801
Google Scholar
[9]
F.Q. Gong, J. Wen, Y.J. Zhao, J.B. Qiang, Y.M. Wang, X.X. Mei, C. Dong, X.H. Wang, Stable reflectivity of bulk metallic glass mirrors for ITER optical diagnostic through an irradiation-induced self-recovery mechanism, J. Nucl. Mater. 429(2012).
DOI: 10.1016/j.jnucmat.2012.05.046
Google Scholar
[10]
Z. Hu, Z.Q. Zhao, Y.D. Wu, T. Lu, J.S. Xing, B.C. Wei, Surface features of Zr-based and Ti-based metallic glasses by ion irradiation, Vacuum. 89(2013) 142-146.
DOI: 10.1016/j.vacuum.2012.03.006
Google Scholar
[11]
Z. Hu, Z.Q. Zhao, Y.P. Hu, J.S. Xing, T. Lu, B.C. Wei, Effect of ion irradiation on mechanical behaviors of Ti40Zr25Be30Cr5 bulk metallic glass, Mater. Res-Ibero-am. J. 15(2012) 713-717.
DOI: 10.1590/s1516-14392012005000047
Google Scholar
[12]
K. Morishita, R. Sugano, B.D. Wirth, MD and KMC modeling of the growth and shrinkage mechanisms of helium-vacancy clusters in Fe, J. Nucl. Mater. 323(2003) 243-250.
DOI: 10.1016/j.jnucmat.2003.08.019
Google Scholar
[13]
B. Wang, X.X. Mei, W.J. Hou, Y.N. Wang, Z.G. Wang, C. Dong, Behavior of high resistance to He2+ induced irradiation damage in metallic glass, Nucl. Instrum. Meth. B. 312(2013) 84-89.
DOI: 10.1016/j.nimb.2013.07.009
Google Scholar
[14]
W.J. Hou, X.X. Mei, Z.G. Wang, Y.N. Wang, Resistance to He2+ irradiation damage in metallic glass Fe80Si7. 43B12. 57, Nucl. Instrum. Meth. B. 342(2015) 221-227.
Google Scholar
[15]
B. Wang, X.X. Mei, H.R. Zhang, W.J. Hou, Y.N. Wang, Z.G. Wang, C. Dong, Resistance to He2+ induced irradiation damage in metallic glass Zr64Cu17. 8Ni10. 7Al7. 5, J. Nucl. Mater. 444(2014) 342-348.
DOI: 10.1016/j.jnucmat.2013.09.058
Google Scholar
[16]
Q. Xu, K. Sato, T. Yoshiie, Nucleation of He bubbles in amorphous FeBSi alloy irradiated with He ions, Phil. Mag. Lett. 92(2012) 527-533.
DOI: 10.1080/09500839.2012.693635
Google Scholar
[17]
M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method of calculating displacement dose rates, Nucl. Eng. Des. 33(1975) 50-54.
DOI: 10.1016/0029-5493(75)90035-7
Google Scholar
[18]
D.J. Bacon, A.F. Calder, F. Gao, V.G. Kapinos, S.J. Wooding, Computer-simulation of defect production by displacement cascades in metals, Nucl. Instrum. Meth. B. 102(1995) 37–46.
DOI: 10.1016/0168-583x(95)80114-2
Google Scholar
[19]
C.H. Zhang, J.S. Jang, Y.T. Yang, Y. Song, Y.M. Sun, H.D. Cho, Y.F. Jin, A study of the suppression of the high-temperature helium embrittlement in an oxide-particle dispersion strengthened alloy, Chin. Sci. Bull. 53(2008) 3416–3421.
DOI: 10.1007/s11434-008-0446-7
Google Scholar
[20]
P. Trocellier, S. Agarwal, S. Miro, A review on helium mobility in inorganic materials, J. Nucl. Mater. 445(2014) 128-142.
DOI: 10.1016/j.jnucmat.2013.10.061
Google Scholar
[21]
R.D. Daniels, Correlation of hydrogen evolution with surface blistering in proton-irradiated aluminum, J. Appl. Phys. 42(1971) 417.
DOI: 10.1063/1.1659613
Google Scholar
[22]
J.H. Evans, An interbubble fracture mechanism of blister formation on helium-irradiated metals, J. Nucl. Mater. 68(1977) 129-140.
DOI: 10.1016/0022-3115(77)90232-x
Google Scholar
[23]
E. P. EerNisse, S. T. Picraux, Role of integrated lateral stress in surface deformation of He-implanted surfaces, J. Appl. Phys. 48(1977) 9-17.
DOI: 10.1063/1.323332
Google Scholar
[24]
P. Murali, U. Ramamurty, Embrittlement of a bulk metallic glass due to sub-T-g annealing, Acta Mater. 53(2005) 1467-1478.
DOI: 10.1016/j.actamat.2004.11.040
Google Scholar
[25]
Á. Révész, A. Concustell, L.K. Varga, S. Suriñach, M.D. Baró, Influence of the wheel speed on the thermal behaviour of Cu60Zr20Ti20 alloys, Mater. Sci. Eng. A. 375(2004) 776-780.
DOI: 10.1016/j.msea.2003.10.151
Google Scholar