Effect of DC Pulse Patterns on Spark Plasma Sintering Process of [Fe0.8Co0.2B0.05Si0.2]96Nb4 Bulk Metallic Glass

Article Preview

Abstract:

The influence of direct current pulse on–off patterns on spark plasma sintering of [Fe0.8Co0.2B0.05Si0.2]96Nb4 on kinetics competition and coordination mechanism of the interface bonding and crystallization has been investigated systematically. No crystallization of metallic glassy matrix and good bonding state between the particles were responsible for good mechanical properties of the fabricated Fe-based bulk glassy alloy at 2:9 (on: off) pattern. The higher local micro area’s instantaneous power and larger cooling time caused by low pulse duty ratio played a vital role in consolidation of amorphous alloy powder and desired structural properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-33

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Suryanarayana, A. Inoue, Iron-based bulk metallic glasses, Int. Mater. Rev. 58(2013) 131–166.

Google Scholar

[2] D.V. Louzguine-Luzgin, A.I. Bazlov, A.L. Greer and A. Inoue, Crystal growth limitation as a critical factor for formation of Fe-based bulk metallic glasses, Acta Mater. 82(2015) 396–402.

DOI: 10.1016/j.actamat.2014.09.025

Google Scholar

[3] A. Inoue, B.L. Shen, A.R. Yavari, A.L. Greer, Mechanical properties of Fe-based bulk glassy alloys in FeBSiNb and FeGaPCBSi systems, J. Mater. Res. 18(2003) 1487.

DOI: 10.1557/jmr.2003.0205

Google Scholar

[4] A. Inoue, B.L. Shen, C.T. Chang, Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1-xCox)0. 75B0. 2Si0. 05]96Nb4 system, Acta Mater. 52(2004) 4093–4099.

DOI: 10.1016/j.actamat.2004.05.022

Google Scholar

[5] Z.Y. Xiao, C.Y. Tang, H.D. Zhao, D.T. Zhang, Effects of sintering temperature on microstructure and property evolution of Fe81Cu2Nb3Si14 soft magnetic materials fabricated from amorphous melt-spun ribbons by spark plasma sintering technique, J. Non. Cryst. Solids, 358(2012).

DOI: 10.1016/j.jnoncrysol.2011.09.001

Google Scholar

[6] S.X. Song, Z. Wang, G.P. Shi, Heating mechanism of spark plasma sintering, Ceram. Int. 39(2013) 1393–1396.

DOI: 10.1016/j.ceramint.2012.07.080

Google Scholar

[7] D. Salamon, M. Eriksson, M. Nygren, Z.J. Shen, Can the use of pulsed direct current induce oscillation in the applied pressure during spark plasma sintering? Sci. Technol. Adv Mater. 13(2012) 015005.

DOI: 10.1088/1468-6996/13/1/015005

Google Scholar

[8] P. Angerer, L.G. Yu, K.A. Khor, G. Korb, I. Zalite. Spark-plasma-sintering (SPS) of nanostructured titanium carbonitride powders. J. Eur. Ceram. Soc. 25(2005) 1919-(1927).

DOI: 10.1016/j.jeurceramsoc.2004.06.008

Google Scholar

[9] M. Belmonte, J. González-Julián, P. Miranzo, M.I. Osendi. Spark plasma sintering: a powerful tool to develop new silicon nitride-based materials. J Eur Ceram Soc. 30(2010) 2937–46.

DOI: 10.1016/j.jeurceramsoc.2010.01.025

Google Scholar

[10] Z.H. Zhang, Z.F. Liu, J.F. Lu, X.B. Shen, F.C. Wang, Y.D. Wang, The sintering mechanism in spark plasma sintering-proof of the occurrence of spark discharge, Scr. Mater. 81(2004) 56–9.

DOI: 10.1016/j.scriptamat.2014.03.011

Google Scholar

[11] D.S. Perera, M. Tokita, S. Moricca, Comparative study of fabrication of Si3N4/SiC composites by spark plasma sintering and hot isostatic pressing, J. Eur. Ceram. Soc. 18(1998) 401–404.

DOI: 10.1016/s0955-2219(97)00139-8

Google Scholar

[12] Y. Tang, J.X. Xue, G.J. Zhang, X.G. Wang, C.M. Xu, Microstructural differences and formation mechanisms of spark plasma sintered ceramics with or without boron nitride wrapping, Scr. Mater. 75(2014) 98–101.

DOI: 10.1016/j.scriptamat.2013.11.029

Google Scholar

[13] Z. K Zhao, C. T Chang, A. Makino, A. Inoue, Preparation of bulk glassy Fe76Si9B10P5 as a soft magnetic material by spark plasma sintering, Mater. Trans. 50(2009) 487 – 489.

DOI: 10.2320/matertrans.mbw200810

Google Scholar

[14] W. Chen, U. Anselmi-Tamburini, J.E. Garay, Fundamental investigations on the spark plasma sintering/synthesis process I. Effect of dc pulsing on reactivity, Mater. Sci. Eng. A. 394(2005) 132–138.

DOI: 10.1016/j.msea.2004.11.020

Google Scholar

[15] M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H.U. Kessel, J. Hennicke, Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials, chapter 13. Intech, Open Science; (2013).

DOI: 10.5772/53706

Google Scholar

[16] Yanagisawa O., Hatayama T. & Matsugi K. (1994). Recent research on spark sintering. Mateira Japan, 33, 12, 1489-1496.

DOI: 10.2320/materia.33.1489

Google Scholar

[17] S. Ghosh, A.H. Choksi, P. Lee, R.A. Raj. Huge effect of weak dc electricalfields on grain growth in zirconia. J. Am. Ceram. Soc. 92(2009) 1856–9.

DOI: 10.1111/j.1551-2916.2009.03102.x

Google Scholar

[18] A.H. Taghvaei et al. Crystallization kinetics of Co40Fe22Ta8B30glassy alloy with high thermal stability and soft magnetic properties, J. Alloys Compd. 605(2014) 199–207.

DOI: 10.1016/j.jallcom.2014.04.015

Google Scholar

[19] S. Chakraborty, A.R. Mallick, D. Debnath, P.K. Das, Densification, mechanical and tribological properties of ZrB2 by SPS: Effect of pulsed current, Int. J. Refract. Met. Hard Mater. 48(2015) 150–156.

DOI: 10.1016/j.ijrmhm.2014.09.004

Google Scholar