Microstructure and Corrosion Behavior of Hot Compressed AZ31B Magnesium Alloy Joint

Article Preview

Abstract:

The extruded AZ31B magnesium alloy plates of 4 mm thickness were butt welded using gas tungsten arc welding (GTA) process. The microstructure and corrosion behavior of the hot compressed welds were evaluated by conducting immersion test in NaCl solution at different immersion time and chloride ion concentrations. The specimens were exposed to immersion in order to characterize their corrosion rates. The corrosion morphology and pit morphology observation was carried out by scanning electron microscopy (SEM). The results showed that the corrosion rate of hot compressed magnesium alloy welds decreased with the increase in immersion time and the corrosion rate increased with the increase in chloride ion concentration, and the corrosion morphology was predominantly influenced by the distribution of β-phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-127

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q.G. Xie, P. Yang, L. Meng, and F.E. Cui, Influence of deformation on precipitation and recrystallization in an AZ80 magnesium alloy, Mater. Sci. Forum, 546-549(2007), 293-299.

DOI: 10.4028/www.scientific.net/msf.546-549.293

Google Scholar

[2] Y. Liu, W. Li, and Y.Y. Li, Microstructure and mechanical properties of ZE10 magnesium alloy prepared by equal channel angular pressing, Int. J. Miner. Metall. Mater., 16(2009), 559-668.

DOI: 10.1016/s1674-4799(09)60096-0

Google Scholar

[3] H. Zhao, P.J. Li, and L.J. He, Kinetics of recrystallization for twin-roll casting AZ31 magnesium alloy during homogenization, Int. J. Miner. Metall. Mater., 18(2011), 570-580.

DOI: 10.1007/s12613-011-0479-9

Google Scholar

[4] L. Xiao, L. Liu, D.L. Chen, S. Esmaeili, and Y. Zhou, Resistance spot weld fatigue behavior and dislocation substructures in two different heats of AZ31 magnesium alloy, Mater. Sci. Eng. A, 529(2011), 81-89.

DOI: 10.1016/j.msea.2011.08.064

Google Scholar

[5] T. Wen, W. Li, X. Chen, and C.L. Pei, Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process, Int. J. Miner. Metall. Mater., 18(2011), 70-79.

DOI: 10.1007/s12613-011-0402-4

Google Scholar

[6] B. Beausir, S. Suwas, L.S. Tóth, K.W. Neale, and J.J. Fundenberger, Analysis of texture evolution in magnesium during equal channel angular extrusion, Acta Mater., 56(2008), 200-211.

DOI: 10.1016/j.actamat.2007.09.032

Google Scholar

[7] P. Kolodziejczak and W. Kalita, Properties of CO2 laser-welded butt joints of dissimilar magnesium alloys, J. Mater. Process. Technol., 209(2009), 1122-1130.

DOI: 10.1016/j.jmatprotec.2008.03.072

Google Scholar

[8] X. Li, P. Yang, J.Z. Li, and H. Ding, Precipitation behavior, texture and mechanical properties of AZ80 magnesium alloy produced by equal channel angular extrusion, Chin. J. Mater. Res., 24(2010), 1-9.

Google Scholar

[9] W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong, and J.D. Lee, Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing, Acta Mater., 51(2003), 3293-3301.

DOI: 10.1016/s1359-6454(03)00161-7

Google Scholar

[10] P. Yang, L.N. Wang, Q.G. Xie, J.Z. Li, H. Ding, and L.L. Lu, Influence of deformation on precipitation in AZ80 magnesium alloy, Int. J. Miner. Metall. Mater., 18(2011), 338-343.

DOI: 10.1007/s12613-011-0444-7

Google Scholar

[11] L.M. Liu and J.B. Jiang, The effect of adhesive layer on variable polarity plasma arc weld bonding process of magnesium alloy, J. Mater. Process. Technol., 209(2009), 2864-2870.

DOI: 10.1016/j.jmatprotec.2008.06.047

Google Scholar

[12] T. Al-Samman and G. Gottstein, Dynamic recrystallization during high temperature deformation of magnesium, Mater. Sci. Eng. A, 490(2008), 411-421.

DOI: 10.1016/j.msea.2008.02.004

Google Scholar

[15] S.R. Agnew and Ö. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, Int. J. Plast., 21(2005), 1161-1172.

DOI: 10.1016/j.ijplas.2004.05.018

Google Scholar

[16] R.C. Zeng, J Zhang, W.J. Huang. Review of studies on corrosion of magnesium alloys [J]. Transactions of Nonferrous Metals Society of China, 2006, 16: 763−771.

DOI: 10.1016/s1003-6326(06)60297-5

Google Scholar

[17] J. Holly, M.F. Horset, T. Paul. Structure property quantification of corrosion pitting anodes immersion and salt spray environment on an extruded AZ61 magnesium alloy [J]. Corrosion Science, 2011, 53: 1348−1361.

DOI: 10.1016/j.corsci.2010.12.025

Google Scholar

[18] Y.W. Song, D.Y. Shan, R.S. Chen, E.H. Corrosion characterization of Mg−8Li alloy in NaCl solution [J]. Corrosion Science, 2009, 51: 1087−1094.

DOI: 10.1016/j.corsci.2009.03.011

Google Scholar

[19] M.C. Zhao, M. Liu, ATRENSA. Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41 [J]. Corrosion Science, 2008, 50: 3168−3178.

DOI: 10.1016/j.corsci.2008.08.023

Google Scholar