Effects of Aging Temperature on the Microstructure and Mechanical Properties of a Ti2AlNb Based Alloy

Article Preview

Abstract:

Effects of aging temperature on microstructure and room temperature mechanical properties of solid solution treated Ti2AlNb based alloy have been investigated. The experimental results showed that after solution treatment and subsequently aging at different temperatures, all the alloys had β/B2, α2 and O three phases, which formed a typical bimodal microstructure with primary α2/O particles and acicular O precipitates dispersing within β/B2 matrix. With increasing the aging temperature, the acicular O precipitates decreased in amount but slightly increased in dimension; the particle α2/O phase did not change in amount but varied in structure, which changed into a core-shell morphology with an α2 core and a rim-O shell, and the rim-O shell was thickened; the change of microstructure led to the decrease in room temperature strength while slight improvement in plasticity. During the tension test, the cracks prefered to propagate along the prior β/B2 grain boundaries which were weaken by the necklace primary α2/O particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

368-375

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Banerjee, A.K. Gogia, T.K. Nandy, V. A . Joshi, A new ordered orthorhombic phase in a Ti3Al-Nb alloy, Acta Metall. 36(1988)871-882.

DOI: 10.1016/0001-6160(88)90141-1

Google Scholar

[2] S.L. Semiatin, P.R. Smith, Microstructural evolution during rolling of Ti-22Al-23Nb sheet, Mater. Sci. Eng. A. 202(1995)26-35.

DOI: 10.1016/0921-5093(95)80043-3

Google Scholar

[3] J. Kumpfert, Intermetallic alloys based on orthorhombic titanium aluminide, Adv. Eng. Mater. 3(2001)851-864.

DOI: 10.1002/1527-2648(200111)3:11<851::aid-adem851>3.0.co;2-g

Google Scholar

[4] M. Hagiwara,A. Araoka, S.J. Yang, S. Emura, S.W. Nam, The effect of lamellar morphology on tensile and high-cycle fatigue behavior of orthorhombic Ti-22Al-27Nb alloy, Metall. Mater. Trans. A. 35(2004)2161-2170.

DOI: 10.1007/s11661-004-0164-y

Google Scholar

[5] T.K. Nandy, D. Banerjee, Creep of the orthorhombic phase based on the intermetallic Ti2AlNb, Intermetallics. 8(2000)915-928.

DOI: 10.1016/s0966-9795(00)00059-5

Google Scholar

[6] S.R. Dey, S. Roy, S. Suwas, J.J. Fundenberger, R.K. Ray, Annealing response of the intermetallic alloy Ti-22Al-25Nb, Intermetallics. 18(2010)1122-1131.

DOI: 10.1016/j.intermet.2010.02.010

Google Scholar

[7] C.J. Boehlerta, C.J. Cowena, C.R. Jaegerb, M. Niinomic, T. Akahori Tensile and fatigue evaluation of Ti-15Al-33Nb (at. %) and Ti-21Al–29Nb (at. %) alloys for biomedical applications, Mater Sci. Eng. C. 25(2005) 263-275.

DOI: 10.1016/j.msec.2004.12.011

Google Scholar

[8] B. Kumpfert, Intermetallic alloys based on orthorhombic titanium aluminide, J. Adv. Eng. Mater. 3(2001) 851-864.

DOI: 10.1002/1527-2648(200111)3:11<851::aid-adem851>3.0.co;2-g

Google Scholar

[9] M. Hagiwaral, S. Emural, A. Araokal, B.O. Kong, F. Tang, Enhanced mechanical properties of orthorhombic Ti2AlNb-based intermetallic alloy, Met. Mater. Int. 9(2003)265-272.

DOI: 10.1007/bf03027045

Google Scholar

[10] A.A. Popov, A.G. Illarionov, S.V. Grib, S.L. Demakov, M.S. Karabanalov, O.A. Elkina, Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide, Phys. Metal. Metall. 106(2008)399-410.

DOI: 10.1134/s0031918x08100104

Google Scholar

[11] N.V. Kazantseva, S.V. Lepikhin, Study of the Ti-Al-Nb phase diagram, Phys. Metal. Metall. 102 (2006)169-180.

DOI: 10.1134/s0031918x06080084

Google Scholar

[12] C.J. Boehlert, The phase evolution and microstructural stability of an Orthorhombic Ti-23Al-27Nb Alloy, J. Phase. Equil. 20(1999)101-108.

DOI: 10.1007/s11669-999-0007-z

Google Scholar

[13] D. Banerjee, The intermetallic Ti2AlNb, Prog. Mater. Sci. 42(1997)135-158.

Google Scholar

[14] X.H. Peng, Y. Mao, S.Q. Li, X.F. Sun, Microstructure controlling by heat treatment and complex processing for Ti2AlNb based alloys, Mater. Sci. Eng. A. 299(2001)75-80.

DOI: 10.1016/s0921-5093(00)01417-9

Google Scholar

[15] C.J. Boehlert, The effects of forging and rolling on microstructure in O+BCC Ti-Al-Nb alloys, Mater. Sci. Eng. A. 279(2000)118-129.

DOI: 10.1016/s0921-5093(99)00624-3

Google Scholar

[16] C.J. Boehlert, J.F. Bingert, Microstructure, tensile, and creep behavior of O+BCC Ti2AlNb alloys processed using induction-float-zone melting, J. Mater. Process. Technol. 117(2001)400-408.

DOI: 10.1016/s0924-0136(01)00796-8

Google Scholar

[17] H. Shankar, N.E. Prasad, A.K. Singh, T.K. Nandy, Low temperature flow behavior of B2 intermetallic phase in Ti–Al–Nb system, Mater. Sci. Eng. A. 424 (2006) 71-76.

DOI: 10.1016/j.msea.2006.02.048

Google Scholar

[18] K.L. Yang, J.C. Huang, Y.N. Wang, Phase transformation in the β phase of super α2 Ti3Al base alloys during static annealing and superplastic deformation at 700-1000 °C, Acta Mater. 51(2003)2577-2594.

DOI: 10.1016/s1359-6454(03)00057-0

Google Scholar

[19] C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle, Part I, The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys, Metall. Mater. Trans. A. 30(1999)2305-2323.

DOI: 10.1007/s11661-999-0240-4

Google Scholar

[20] K. Muraleedharan, T.K. Nandy, D. Banerjee, S. Lele, Phase stability and ordering behavior of the O phase in T-Al-Nb alloys, Intermetallics. 3(1995)187-199.

DOI: 10.1016/0966-9795(95)98930-7

Google Scholar