[1]
D. Banerjee, A.K. Gogia, T.K. Nandy, V. A . Joshi, A new ordered orthorhombic phase in a Ti3Al-Nb alloy, Acta Metall. 36(1988)871-882.
DOI: 10.1016/0001-6160(88)90141-1
Google Scholar
[2]
S.L. Semiatin, P.R. Smith, Microstructural evolution during rolling of Ti-22Al-23Nb sheet, Mater. Sci. Eng. A. 202(1995)26-35.
DOI: 10.1016/0921-5093(95)80043-3
Google Scholar
[3]
J. Kumpfert, Intermetallic alloys based on orthorhombic titanium aluminide, Adv. Eng. Mater. 3(2001)851-864.
DOI: 10.1002/1527-2648(200111)3:11<851::aid-adem851>3.0.co;2-g
Google Scholar
[4]
M. Hagiwara,A. Araoka, S.J. Yang, S. Emura, S.W. Nam, The effect of lamellar morphology on tensile and high-cycle fatigue behavior of orthorhombic Ti-22Al-27Nb alloy, Metall. Mater. Trans. A. 35(2004)2161-2170.
DOI: 10.1007/s11661-004-0164-y
Google Scholar
[5]
T.K. Nandy, D. Banerjee, Creep of the orthorhombic phase based on the intermetallic Ti2AlNb, Intermetallics. 8(2000)915-928.
DOI: 10.1016/s0966-9795(00)00059-5
Google Scholar
[6]
S.R. Dey, S. Roy, S. Suwas, J.J. Fundenberger, R.K. Ray, Annealing response of the intermetallic alloy Ti-22Al-25Nb, Intermetallics. 18(2010)1122-1131.
DOI: 10.1016/j.intermet.2010.02.010
Google Scholar
[7]
C.J. Boehlerta, C.J. Cowena, C.R. Jaegerb, M. Niinomic, T. Akahori Tensile and fatigue evaluation of Ti-15Al-33Nb (at. %) and Ti-21Al–29Nb (at. %) alloys for biomedical applications, Mater Sci. Eng. C. 25(2005) 263-275.
DOI: 10.1016/j.msec.2004.12.011
Google Scholar
[8]
B. Kumpfert, Intermetallic alloys based on orthorhombic titanium aluminide, J. Adv. Eng. Mater. 3(2001) 851-864.
DOI: 10.1002/1527-2648(200111)3:11<851::aid-adem851>3.0.co;2-g
Google Scholar
[9]
M. Hagiwaral, S. Emural, A. Araokal, B.O. Kong, F. Tang, Enhanced mechanical properties of orthorhombic Ti2AlNb-based intermetallic alloy, Met. Mater. Int. 9(2003)265-272.
DOI: 10.1007/bf03027045
Google Scholar
[10]
A.A. Popov, A.G. Illarionov, S.V. Grib, S.L. Demakov, M.S. Karabanalov, O.A. Elkina, Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide, Phys. Metal. Metall. 106(2008)399-410.
DOI: 10.1134/s0031918x08100104
Google Scholar
[11]
N.V. Kazantseva, S.V. Lepikhin, Study of the Ti-Al-Nb phase diagram, Phys. Metal. Metall. 102 (2006)169-180.
DOI: 10.1134/s0031918x06080084
Google Scholar
[12]
C.J. Boehlert, The phase evolution and microstructural stability of an Orthorhombic Ti-23Al-27Nb Alloy, J. Phase. Equil. 20(1999)101-108.
DOI: 10.1007/s11669-999-0007-z
Google Scholar
[13]
D. Banerjee, The intermetallic Ti2AlNb, Prog. Mater. Sci. 42(1997)135-158.
Google Scholar
[14]
X.H. Peng, Y. Mao, S.Q. Li, X.F. Sun, Microstructure controlling by heat treatment and complex processing for Ti2AlNb based alloys, Mater. Sci. Eng. A. 299(2001)75-80.
DOI: 10.1016/s0921-5093(00)01417-9
Google Scholar
[15]
C.J. Boehlert, The effects of forging and rolling on microstructure in O+BCC Ti-Al-Nb alloys, Mater. Sci. Eng. A. 279(2000)118-129.
DOI: 10.1016/s0921-5093(99)00624-3
Google Scholar
[16]
C.J. Boehlert, J.F. Bingert, Microstructure, tensile, and creep behavior of O+BCC Ti2AlNb alloys processed using induction-float-zone melting, J. Mater. Process. Technol. 117(2001)400-408.
DOI: 10.1016/s0924-0136(01)00796-8
Google Scholar
[17]
H. Shankar, N.E. Prasad, A.K. Singh, T.K. Nandy, Low temperature flow behavior of B2 intermetallic phase in Ti–Al–Nb system, Mater. Sci. Eng. A. 424 (2006) 71-76.
DOI: 10.1016/j.msea.2006.02.048
Google Scholar
[18]
K.L. Yang, J.C. Huang, Y.N. Wang, Phase transformation in the β phase of super α2 Ti3Al base alloys during static annealing and superplastic deformation at 700-1000 °C, Acta Mater. 51(2003)2577-2594.
DOI: 10.1016/s1359-6454(03)00057-0
Google Scholar
[19]
C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle, Part I, The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys, Metall. Mater. Trans. A. 30(1999)2305-2323.
DOI: 10.1007/s11661-999-0240-4
Google Scholar
[20]
K. Muraleedharan, T.K. Nandy, D. Banerjee, S. Lele, Phase stability and ordering behavior of the O phase in T-Al-Nb alloys, Intermetallics. 3(1995)187-199.
DOI: 10.1016/0966-9795(95)98930-7
Google Scholar