[1]
A. Inoue, A. Takeuchi, Recent development and application products of bulk glassy alloys, Acta Mater. 59 (2011) 2243-2267.
DOI: 10.1016/j.actamat.2010.11.027
Google Scholar
[2]
A. L. Greer, Metallic glasses .. on the threshold, Mater Today. 12 (2009) 14-22.
Google Scholar
[3]
W. H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog Mater Sci. 57 (2012) 487-656.
DOI: 10.1016/j.pmatsci.2011.07.001
Google Scholar
[4]
A. L. Greer, Y. Q. Cheng, E. Ma, Shear bands in metallic glasses, Mater Sci Eng R. 74 (2013) 71-132.
Google Scholar
[5]
H. F. Zhang, H. Li, A. M. Wang, H. M. Fu, B. Z. Ding, Z. Q. Hu, Synthesis and characteristics of 80 vol. % tungsten (W) fibre/Zr based metallic glass composite, Intermetallics. 17 (2009) 1070-1077.
DOI: 10.1016/j.intermet.2009.05.011
Google Scholar
[6]
Z. K. Li, H. M. Fu, P. F. Sha, Z. W. Zhu, A. M. Wang, H. Li, H. W. Zhang, H. F. Zhang, Z. Q. Hu, Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites, Sci Rep. 5 (2015) 1-6.
DOI: 10.1038/srep08967
Google Scholar
[7]
R. D. Conner, R. B. Dandliker, W. L. Johnson, Mechanical properties of tungsten and steel fiber reinforced Zr41. 25Ti13. 75Cu12. 5Ni10Be22. 5 metallic glass matrix composites, Acta Mater. 46 (1998) 6089-6102.
DOI: 10.1016/s1359-6454(98)00275-4
Google Scholar
[8]
C. C. Hays, C. P. Kim, W. L. Johnson, Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions, Phys Rev Lett. 84 (2000) 2901-2904.
DOI: 10.1103/physrevlett.84.2901
Google Scholar
[9]
D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, W. L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature. 451 (2008) 1085-U1083.
DOI: 10.1038/nature06598
Google Scholar
[10]
J. W. Qiao, In-situ Dendrite/Metallic Glass Matrix Composites: A Review, J Mater Sci Technol. 29 (2013) 685-701.
Google Scholar
[11]
M. Tang, Z. Zhu, H. Fu, A. Wang, H. Li, H. Zhang, G. Ma, H. Zhang,Z. Hu, Ti-based amorphous composites with quantitatively controlled in-situ formation of dendrites, Acta Metall Sinica. 48 (2013) 861-866.
DOI: 10.3724/sp.j.1037.2012.00198
Google Scholar
[12]
M. Q. Tang, H. F. Zhang, Z. W. Zhu, H. M. Fu, A. M. Wang, H. Li,Z. Q. Hu, TiZr-base Bulk Metallic Glass with over 50 mm in diameter, J Mater Sci Technol. 26 (2010) 481-486.
DOI: 10.1016/s1005-0302(10)60077-1
Google Scholar
[13]
G. Kumar, K. N. Prabhu, Review of non-reactive and reactive wetting of liquids on surfaces, Adv Colloid Interface. 133 (2007) 61-89.
DOI: 10.1016/j.cis.2007.04.009
Google Scholar
[14]
Z. K. Li, G. F. Ma, H. M. Fu, P. F. Sha, B. Zhang, Z. W. Zhu, A. M. Wang, H. Li, H. W. Zhang, H. F. Zhang, Z. Q. Hu, The spreading kinetics and precursor film characteristics of Zr-based alloy melt on W substrate, Mater Lett. 98 (2013) 98-101.
DOI: 10.1016/j.matlet.2013.02.005
Google Scholar
[15]
N. Eustathopoulos, Progress in understanding and modeling reactive wetting of metals on ceramics, Curr Opin Solid St M. 9 (2005) 152-160.
Google Scholar
[16]
E. Saiz, R. M. Cannon,A. P. Tomsia: High-temperature wetting and the work of adhesion in metal/oxide systems, Ann. Rev. Mater. Res. 38 (2008) 197-226.
DOI: 10.1146/annurev.matsci.38.060407.132443
Google Scholar
[17]
G Lütjering, JC Williams, Titanium: engineering materials and processes, second ed, Manchester, UK: Springer; (2007).
Google Scholar