Wetting Behavior and Interface Characteristic of Ti32.8Zr30.2Ni5.3Cu9Be22.7/Ti6Al4V

Article Preview

Abstract:

The wetting behavior and the interaction at the liquid-solid interface are significant in preparation of metallic glass composite. In this paper, the wetting behavior and the interfacial interaction between Ti32.8Zr30.2Ni5.3Cu9Be22.7 (denoted as ZT3) bulk metallic glass (BMG) alloy melt and Ti6Al4V (denoted as TC4) substrate at different temperatures were investigated using sessile drop method. The results show that ZT3 alloy melt wetted the substrate well. With the increase of temperature, the droplet spread out rapidly and then came to equilibrium gradually. The equilibrium contact angle under 1273 K stabilized at about 15°. Dendrite phase generated at the interface during the wetting progress. The composition of the interface product transformed from Ti69.8Zr24.2Al2.2V1Cu2.8 to Ti73.6Zr15.3Al5V2.7Cu2.6Ni0.8 with the temperature rising from 973 K to 1273 K. Meanwhile, the dissolution of the TC4 substrate increased with increasing the temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

385-390

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Inoue, A. Takeuchi, Recent development and application products of bulk glassy alloys, Acta Mater. 59 (2011) 2243-2267.

DOI: 10.1016/j.actamat.2010.11.027

Google Scholar

[2] A. L. Greer, Metallic glasses .. on the threshold, Mater Today. 12 (2009) 14-22.

Google Scholar

[3] W. H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog Mater Sci. 57 (2012) 487-656.

DOI: 10.1016/j.pmatsci.2011.07.001

Google Scholar

[4] A. L. Greer, Y. Q. Cheng, E. Ma, Shear bands in metallic glasses, Mater Sci Eng R. 74 (2013) 71-132.

Google Scholar

[5] H. F. Zhang, H. Li, A. M. Wang, H. M. Fu, B. Z. Ding, Z. Q. Hu, Synthesis and characteristics of 80 vol. % tungsten (W) fibre/Zr based metallic glass composite, Intermetallics. 17 (2009) 1070-1077.

DOI: 10.1016/j.intermet.2009.05.011

Google Scholar

[6] Z. K. Li, H. M. Fu, P. F. Sha, Z. W. Zhu, A. M. Wang, H. Li, H. W. Zhang, H. F. Zhang, Z. Q. Hu, Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites, Sci Rep. 5 (2015) 1-6.

DOI: 10.1038/srep08967

Google Scholar

[7] R. D. Conner, R. B. Dandliker, W. L. Johnson, Mechanical properties of tungsten and steel fiber reinforced Zr41. 25Ti13. 75Cu12. 5Ni10Be22. 5 metallic glass matrix composites, Acta Mater. 46 (1998) 6089-6102.

DOI: 10.1016/s1359-6454(98)00275-4

Google Scholar

[8] C. C. Hays, C. P. Kim, W. L. Johnson, Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions, Phys Rev Lett. 84 (2000) 2901-2904.

DOI: 10.1103/physrevlett.84.2901

Google Scholar

[9] D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, W. L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature. 451 (2008) 1085-U1083.

DOI: 10.1038/nature06598

Google Scholar

[10] J. W. Qiao, In-situ Dendrite/Metallic Glass Matrix Composites: A Review, J Mater Sci Technol. 29 (2013) 685-701.

Google Scholar

[11] M. Tang, Z. Zhu, H. Fu, A. Wang, H. Li, H. Zhang, G. Ma, H. Zhang,Z. Hu, Ti-based amorphous composites with quantitatively controlled in-situ formation of dendrites, Acta Metall Sinica. 48 (2013) 861-866.

DOI: 10.3724/sp.j.1037.2012.00198

Google Scholar

[12] M. Q. Tang, H. F. Zhang, Z. W. Zhu, H. M. Fu, A. M. Wang, H. Li,Z. Q. Hu, TiZr-base Bulk Metallic Glass with over 50 mm in diameter, J Mater Sci Technol. 26 (2010) 481-486.

DOI: 10.1016/s1005-0302(10)60077-1

Google Scholar

[13] G. Kumar, K. N. Prabhu, Review of non-reactive and reactive wetting of liquids on surfaces, Adv Colloid Interface. 133 (2007) 61-89.

DOI: 10.1016/j.cis.2007.04.009

Google Scholar

[14] Z. K. Li, G. F. Ma, H. M. Fu, P. F. Sha, B. Zhang, Z. W. Zhu, A. M. Wang, H. Li, H. W. Zhang, H. F. Zhang, Z. Q. Hu, The spreading kinetics and precursor film characteristics of Zr-based alloy melt on W substrate, Mater Lett. 98 (2013) 98-101.

DOI: 10.1016/j.matlet.2013.02.005

Google Scholar

[15] N. Eustathopoulos, Progress in understanding and modeling reactive wetting of metals on ceramics, Curr Opin Solid St M. 9 (2005) 152-160.

Google Scholar

[16] E. Saiz, R. M. Cannon,A. P. Tomsia: High-temperature wetting and the work of adhesion in metal/oxide systems, Ann. Rev. Mater. Res. 38 (2008) 197-226.

DOI: 10.1146/annurev.matsci.38.060407.132443

Google Scholar

[17] G Lütjering, JC Williams, Titanium: engineering materials and processes, second ed, Manchester, UK: Springer; (2007).

Google Scholar