Hot Deformation Behavior and Processing Map of 25%SiCp/2009A1 Composite

Article Preview

Abstract:

The hot deformation characteristics of 25%SiCp/2009A1 composite fabricated by powder metallurgy route were studied by thermal compaction testing on Gleeble-3800 hot-simulation machine in the temperature range of 370~520 °C and strain rate range of 0.01~10 s-1. The processing maps of 25%SiCp/2009A1 composites were developed on the basis of dynamic material model. The results show that the flow stress decreased with increasing deformation temperature at a constant strain rate, and increased with increasing strain rate at a constant temperature. The processing maps present unsteady zones at high strain rate (≥1 s-1). There are a few interfaces of particle-matrix separated and the particle itself cracked. There was significant dynamic recovery and dynamic recrystallization occurred in the higher temperature and lower strain rate region. The optimum hot deformation condition of the composites attained by the maps were in the temperature range of 450~490 °Cand in the strain rate range of 0.01~0.1 s-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

409-415

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Torralba, C.E. da Costa, F. Velasco, P/M aluminum matrix composites: an overview, Journal of Materials Processing Technology. 13 (2003) 203-206.

DOI: 10.1016/s0924-0136(02)00234-0

Google Scholar

[2] S.M. Zebarjad, S.A. Sajjadi, Dependency of physical and mechanical properties of mechanical alloyed Al-Al2O3 composite on milling time, Mater. Des. 28 (2007) 2113-2120.

DOI: 10.1016/j.matdes.2006.05.020

Google Scholar

[3] A.L. Geiger, R.J.A. Walke, The processing and properties of discontinuously reinforced aluminum composites, Journal of Materials. 8 (1991) 8-15.

Google Scholar

[4] B. Maruyama, W.H. Hunt, Discontinuously reinforced aluminum: current status and future direction, Journal of Metals. 11 (1999) 59-61.

DOI: 10.1007/s11837-999-0225-1

Google Scholar

[5] W.C. Harrigan Jr, Commercial processing of metal matrix composites, Mater. Sci. Eng. A. 244 (1998) 75-79.

Google Scholar

[6] J.W. Kaczmar, K. Pietrzak, W. Wlosinski, The production and application of metal matrix composite materials, J. Mater. Proc. Technol. 106 (2000) 58-67.

Google Scholar

[7] H.J. Frost, M.F. Ashby, Deformation mechanism maps, the plasticity and creep of metals and ceramics, Pergamon, London, (1982).

Google Scholar

[8] Y.V.R.K. Prasad, Processing maps: A status report, J. Mater. Eng. Perform. 12 (2003) 638-645.

Google Scholar

[9] B.L. Xiao, J.Z. Fan, X.F. Tian, W.Y. Zhang, L.K. Shi, Hot deformation and processing map of 15%SiCp/2009Al composite, J. Mater. Sci. 40 (2005) 5757-5762.

DOI: 10.1007/s10853-005-1292-5

Google Scholar

[10] S.M. Hao, J.P. Xie, Hot deformation behavior and processing map of 30%SiCp/2024A1 composite, Materials Science and Engineering of Powder Metallurgy. 19 (2014) 1-7.

Google Scholar

[11] M. Rajamuthamilselvan, S. Ramanathan, R. Karthikeyan, Processing map for hot working of SiCp/7075Al composites, Trans. Nonferrous Met. Soc. China. 20 (2010) 668-674.

DOI: 10.1016/s1003-6326(09)60196-5

Google Scholar

[12] Y.B. Yang, Z. Zhang, X. Zhang, Processing map of Al2O3 particulate reinforced Al alloy matrix composites, Mater. Sci. Eng. A. 558 (2012) 112-118.

DOI: 10.1016/j.msea.2012.07.092

Google Scholar

[13] R. Raj, Development of a processing map for use in warm forming and hot forming processes, Mater. Trans. A. 12 (1998) 1089-1097.

DOI: 10.1007/bf02643490

Google Scholar

[14] Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Modeling of dynamic material behavior in hot deformation: forging of Ti-6242, Metallurgical and Materials Transactions A. 15 (1984) 1883-1892.

DOI: 10.1007/bf02664902

Google Scholar

[15] Y.V.R.K. Prasad, T. Seshacharyulu, Modelling of hot deformation for microstructural control, International Materials Reviews. 43 (1998) 243-258.

DOI: 10.1179/imr.1998.43.6.243

Google Scholar

[16] G. Ganesan, K. Raghukandan, R. Karthikeyan, B. C. Pai, Development of processing map for 6061 Al/15% SiCp through neural networks, Mater. Sci. Eng. A. 166 (2005) 423-429.

DOI: 10.1016/j.jmatprotec.2004.08.027

Google Scholar

[17] J. Luo, M.Q. Li, D.W. Ma, The deformation behavior and processing maps in the isothermal compression of 7A09 aluminum alloy, Mater. Sci. Eng. A. 532 (2012) 548-557.

DOI: 10.1016/j.msea.2011.10.120

Google Scholar

[18] P. Zhang, F.G. Li, H.Q. Li, Workability and processing map of SiC particle reinforced aluminum matrix composites at high temperature and strain rate, Rare Metal Mater. Eng. 38 (2009) 9-14.

Google Scholar

[19] S.L. Guo, D.F. Li, D. Chen, H.W. Wang, Processing maps of hot plastic deformation for in-situ synthesis of TiB2/6351 composite, Rare Metal Materials and Engineering. 38 (2009) 387-392.

Google Scholar

[20] L.J. Huang, L. Geng, A.B. Li, X.P. Cui, H.Z. Li, G.S. Wang, Characteristics of hot compression behavior of Ti-6. 5Al-3. 5Mo-1. 5Zr-0. 3Si alloy with an equiaxed microstructure, Mater. Sci. Eng. A. 505 (2009) 136-143.

DOI: 10.1016/j.msea.2008.12.041

Google Scholar

[21] M. Rajamuthamilselvan, S. Ramanathan, R. Karthikeyan, Processing map for hot working of SiCp/7075 Al composites, Trans. Nonferrous Met. Soc. China 20 (2010) 668-674.

DOI: 10.1016/s1003-6326(09)60196-5

Google Scholar

[22] B.C. Ko, Y.C. Yoo, Prediction of dynamic recrystallization condition by deformation efficiency for Al 2024 composite reinforced with SiC particle, J. Mater. Sci. 35 (2000) 4073-4077.

Google Scholar

[23] Y.C. Yoo, J.S. Jeon, H.I. Lee, The effect of SiC whiskers on the hot-deformation behavior of SiCw/AA2124 composites, Comp. Sci. Technol. 57 (1997) 651-654.

DOI: 10.1016/s0266-3538(97)00010-9

Google Scholar

[24] Y.V.R.K. Prasad, T. Seshacharyalu, S.C. Medeiros, W.G. Frazier, Effect of prior β-grain size on the hot deformation behavior of Ti-6Al-4V: Coarse vs coarser, Journal of Materials Engineering and Performance. 9 (2000) 153-160.

DOI: 10.1361/105994900770346097

Google Scholar