Enhanced Tensile Properties of Graphene-Al5083 Composite Prepared by Hot Pressing and Hot Extrusion

Article Preview

Abstract:

Graphene, with outstanding mechanical properties of 1TPa of Young’s modulus and 130GPa of tensile strength, has been considered as an excellent reinforcement in composites. Graphene nanoplates (GNP) reinforced Al5083 alloy composites were successfully fabricated by powder metallurgy method. Flake-like Al5083 powder was firstly added into a GNP-alcohol solution and then dried in vacuum oven at 343 K for 5 h. The composite powders were sintered at 723K under pressure of 300 MPa for 1 h, followed by extrusion at 623 K. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed for microstructure characterization. Al4C3 cannot be observed in the composite, suggesting that there was no reaction occurred between GNP and Al matrix during the processing. Tensile test results revealed that the ultimate tensile strength and tensile elongation of 0.3wt.%GNP/Al5083 composites were 580MPa and 15%, respectively, showing optimal combination of strength and ductility. The relevant strengthening mechanisms of the composites were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

424-429

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing, Carbon, 69 (2014) 264-274.

DOI: 10.1016/j.carbon.2013.12.025

Google Scholar

[2] C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li, Q. Cui, An Approach to Obtaining Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Reinforced Al-Matrix Composites, Advance Materials, 19 (2007) 1128-1132.

DOI: 10.1002/adma.200601381

Google Scholar

[3] L. Jiang, G. Fan, Z. Li, X. Kai, D. Zhang, Z. Chen, S. Humphries, G. Heness, W.Y. Yeung, An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder, Carbon, 49 (2011) 1965-(1971).

DOI: 10.1016/j.carbon.2011.01.021

Google Scholar

[4] R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Strengthening in carbon nanotube/aluminium (CNT/Al) composites, Scripta Materialia, 53 (2005) 1159-1163.

DOI: 10.1016/j.scriptamat.2005.07.022

Google Scholar

[5] L. Jiang, Z. Li, G. Fan, L. Cao, D. Zhang, The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution, Carbon, 50 (2012) 1993-(1998).

DOI: 10.1016/j.carbon.2011.12.057

Google Scholar

[6] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar

[7] M. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. -Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, Acs Nano, 3 (2009) 3884-3890.

DOI: 10.1021/nn9010472

Google Scholar

[8] L. Jiajie, H. Yi, Z. Long, W. Yan, M. Yanfeng, G. Tianyin, C. Yongsheng, Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites, Advance Function Materials, 19 (2009) 2297-2302.

DOI: 10.1002/adfm.200801776

Google Scholar

[9] S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Graphene–aluminum nanocomposites, Materials Science and Engineering A, 528 (2011) 7933-7937.

DOI: 10.1016/j.msea.2011.07.043

Google Scholar

[10] Z. Li, G. Fan, Z. Tan, Q. Guo, D. Xiong, Y. Su, Z. Li, D. Zhang, Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites, Nanotechnology, 25 (2014) 325601.

DOI: 10.1088/0957-4484/25/32/325601

Google Scholar

[11] R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, R. Martínez-Sánchez, Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying, Journal of Alloys and Compounds, 615 (2014).

DOI: 10.1016/j.jallcom.2014.01.225

Google Scholar

[12] S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, R.S. Ruoff, Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents, Nano Letters, 9 (2009) 1593-1597.

DOI: 10.1021/nl803798y

Google Scholar

[13] R. Goswami, G. Spanos, P.S. Pao, R.L. Holtz, Precipitation behavior of the ß phase in Al-5083, Materials Science and Engineering: A, 527 (2010) 1089-1095.

DOI: 10.1016/j.msea.2009.10.007

Google Scholar

[14] C.F. Deng, D.Z. Wang, X.X. Zhang, A.B. Li, Processing and properties of carbon nanotubes reinforced aluminum composites, Materials Science and Engineering: A, 444 (2007) 138-145.

DOI: 10.1016/j.msea.2006.08.057

Google Scholar

[15] H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon, 47 (2009) 570-577.

DOI: 10.1016/j.carbon.2008.10.041

Google Scholar

[16] J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, S.L. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling, Materials Science and Engineering: A, 626 (2015).

DOI: 10.1016/j.msea.2014.12.102

Google Scholar

[17] D. -B. Xiong, M. Cao, Q. Guo, Z. Tan, G. Fan, Z. Li, D. Zhang, Graphene-and-Copper Artificial Nacre Fabricated by a Preform Impregnation Process: Bioinspired Strategy for Strengthening-Toughening of Metal Matrix Composite, Acs Nano, 9 (2015).

DOI: 10.1021/acsnano.5b01067

Google Scholar

[18] S.J. Yan, S.L. Dai, X.Y. Zhang, C. Yang, Q.H. Hong, J.Z. Chen, Z.M. Lin, Investigating aluminum alloy reinforced By graphene nanoflakes, Materials Science and Engineering: A, 612 (2014) 440-444.

DOI: 10.1016/j.msea.2014.06.077

Google Scholar