[1]
S.C. Tjong, Y.W. Mai, Processing-structure-property aspects of particulate- and whisker- reinforced titanium matrix composites, Compos Sci Techol, 68(2008) 583-601.
DOI: 10.1016/j.compscitech.2007.07.016
Google Scholar
[2]
A.M. Johnson, P.K. Wright. Applications of advanced materials to aircraft gas turbine engines. AIAA. (1990) 90-2281.
Google Scholar
[3]
W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, H. Mori, Solidification paths and reinforcement morphologies in melt-processed (TiB+TiC)/Ti in Situ composites, Metall Mater Ttrans A, 33(2002) 3055-3063.
DOI: 10.1007/s11661-002-0290-3
Google Scholar
[4]
S. Gorsse, Y. L Petitcorps, S. Matar, F. Rebillat, Investigation of the Young's modulus of TiB needles in situ produced in titanium matrix composite, Mater Sci Eng A, 340(2003) 80-87.
DOI: 10.1016/s0921-5093(02)00188-0
Google Scholar
[5]
S.C. Tjong, G. Wang, Cyclic Deformation Characteristics of Titanium-Matrix Composite Reinforced with In-situ TiB Whiskers, Adv Engg Mater, 7(2005) 63-68.
DOI: 10.1002/adem.200400129
Google Scholar
[6]
G.G. Chernyshov, S.A. Panichenko, T.A. Chernyshova. Welding of metal composites. Welding of International. 17(2003) 487-492.
DOI: 10.1533/wint.2003.3155
Google Scholar
[7]
Z.G. Zhang, J.N. Qin, Z.W. Zhang, Y.F. Chen, W.J. Lu, Microstructure effect on mechanical properties of in situ synthesized titanium matrix composites reinforced with TiB and La2O3. Mater Lett, 64(2010) 361-363.
DOI: 10.1016/j.matlet.2009.11.019
Google Scholar
[8]
A.B. Short, Gas tungsten arc welding of a+b titanium alloys: a review, Mater Sci Technol, 25(2009), 309-324.
Google Scholar
[9]
K. Geng, W.J. Lu, D. Zhang, Microstructure and tensile properties of in situ synthesized (TiB+Y2O3)/Ti composites at elevated temperature, Mater Sci Engg A, 360(2003) 176-182.
DOI: 10.1016/s0921-5093(03)00437-4
Google Scholar
[10]
R.K. Learya, E. Mersonb, K. Birmingham, Microstructural and microtextural analysis of Inter-Pulse GTCAW welds in Cp-Ti and Ti-6Al-4V, Mater Sci Engg A, 527(2010) 7694-7705.
DOI: 10.1016/j.msea.2010.08.036
Google Scholar
[11]
J. W Mao, M.M. Wang, L.Q. Wang, X.B. Xue, W.J. Lu, X.J. Sun, X.X. Zhu. Weld zone characteristic and mechanical performance of in situ titanium matrix composites using gas tungsten arc welding (GTAW), Sci Technol Weld Joi. (2012) 17: 630-5.
DOI: 10.1179/1362171812y.0000000054
Google Scholar
[12]
L.J. Huang, L. Geng, H.X. Peng, B. Kaveendran, High temperature tensile properties of in situ TiBw/Ti6Al4V composites with novel network reinforcement architecture, Mater Sci Eng A, 534(2012) 688-692.
DOI: 10.1016/j.msea.2011.12.028
Google Scholar
[13]
X.H. Wang, J.T. Niu, S.K. Guan, L.J. Wang, D.F. Cheng, Investigation on TIG welding of SiCp-reinforced aluminum-matrix composite using mixed shielding gas and Al-Si filler, Mater Sci Eng A, 499(2009) 106-110.
DOI: 10.1016/j.msea.2008.07.037
Google Scholar
[14]
Norrish J. Advanced welding processes: technologies and process control, WP Ltd, England, (2006).
Google Scholar
[15]
C.V. Goncalves, L.O. Vilarinho, A. Scotti, G. Guimaraes. Estimation of heat source and thermal efficiency in GTAW process by using inverse techniques, J Materi Process Technol, 172(2006) 42-51.
DOI: 10.1016/j.jmatprotec.2005.08.010
Google Scholar
[16]
C.L. Zhang, F.T. Kong, S.L. Xiao, E.T. Zhao, L.J. Xu, Y.Y. Chen, Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB+TiC) reinforcements. Mater Sci Eng A, 548(2012) 152-60.
DOI: 10.1016/j.msea.2012.04.004
Google Scholar