Hot-Gas Corrosion Resistance of DD9 Single Crystal Superalloy

Article Preview

Abstract:

The hot-gas corrosion resistance of DD9 single crystal superalloy at 900°Cwas investigated in the present study. The composition and the morphology of corrosion layer were characterized by energy dispersive X-ray analysis spectroscope (EDS) and scanning electron microscopy (SEM). The results show that DD9 single crystal superalloy has excellent hot-gas corrosion resistance and basically obeys parabolic rate law during corrosion test for 100 h at 900 °C. The irregular and prismatic morphology of NiO tightly piles each other on the surface after 100 h corrosion test. The corrosion products possess three layers, outer layer is predominate NiO with a little of Al2O3, middle layer is mixed oxide, and inner layer is sulfide. It was found that flake shaped NiS phase formed in the sulfide layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

463-467

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Caron, T. Khan, Aerospace Science Technology 3 (1999) 513–523.

Google Scholar

[2] S. Walston, A. Cetel, R. Mackay, K. OHara, D. Duhl, R. Dreshfield, in: K.A. Green, T.M. Pollok, H. Harada, T.W. Howson, R.C. Reed, J.J. Schirra, S. Walston (Eds. ), Superalloys, Pennsylvania, TMS, 2004, p.15–24.

DOI: 10.7449/2004/superalloys_2004_15_24

Google Scholar

[3] A. Akhtar, M.S. Hook, R.C. Reed, Metallurgical and Materials Transactions A, 36(2005) 3001–3017.

Google Scholar

[4] Z.F. Yu, Z. Zheng, E.Z. Liu, Y.S. Yu, Y.X. Zhu, Acta Metallurgica Sinica, 43(2007)653–658.

Google Scholar

[5] J.H. Ma, G.M. Liu, C.L. Zeng, N. Du, Q. Zhao, Surface Technology, 35(8)(2006)15–17.

Google Scholar

[6] A. Encinas-Oropesa, G.L. Drew, M.C. Hardy, A.J. Leggett, J.R. Nicholls, N.J. Simms, in: R.C. Reed, K.A. Green, P. Caron, P. Gabb, G. Fahrmann, E.S. Huron, S.A. Woodard(Eds. ), Superalloys, Pennsylvania, TMS, 2008, p.609–618.

DOI: 10.7449/2008/superalloys_2008_609_618

Google Scholar

[7] X.Q. Long, Total Corrosion Control, 17. 2(2003)9–14.

Google Scholar

[8] D.Z. Zhao, Equipment Environmental Engineering, 8(5)(2001)100–103.

Google Scholar

[9] L. Wang, C.Y. Liu, Z.Y. Han, W.W. Tong, Journal of Chinese Society for Corrosion and Protection, 31(5)(2001)399–403.

Google Scholar

[10] J.R. Li, S.Z. Liu, Z.X. Shi, Y.S. Luo, X.G. Wang, Journal of Iron and Steel Research, Supplement (2011) 337–340.

Google Scholar

[11] J.P. Li, F.J. Wu, W.G. Li, Corrosion & Protection, 21(6)(2000) 269–271.

Google Scholar

[12] T.F. Li, Metal High Temperature Oxidation and Hot Corrosion, Beijing, Chemical Industry Press, (2003).

Google Scholar

[13] W. Ying, N. Toshio. Surface & Coating Technology, 20. 2(2007) 140–145.

Google Scholar

[14] Z.X. Shi, J.R. Li, S.Z. Liu, M. Han, Transactions of Nonferrous Metals Society of China, 21(2011) 998–1003.

Google Scholar

[15] M. Bensch, J. Preuben, R Huttner, G. Obigodi, S. Virtanen, J. Gabel, U Glatzel, Acta Materialia, 58(2010) 1607–1617.

DOI: 10.1016/j.actamat.2009.11.004

Google Scholar