Influence of Metallographic Etchant on γ’ Precipitates Characterization in a Single Crystal Nickel-Base Superalloy

Article Preview

Abstract:

Two metallographic etchants were employed to characterize the γ′ precipitates in a single crystal Nickel-base superalloy. One can corrode γ matrix and retain γ′ precipitates, while the other one can remove γ′ and obtain γ. Potentiodynamic polarization curves of γ′ precipitates and γ matrix in these two etchants were measured to examine the electrochemical process of metallographic etching. The results from the electrochemical tests showed that the corrosion potential (Ecorr) of each phase determined the metallographic etching morphology. For γ′ volume fraction evaluation, the quantitative analysis by image analysis software was carried out with the electrolytically extracted γ′ precipitates for the same specimen. Statistics showed that the etchant which selectively etched γ′ precipitates can provide appropriate results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

563-569

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.M. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties, Journal of propulsion and power. 22 (2006) 361-374.

DOI: 10.2514/1.18239

Google Scholar

[2] R.C. Reed, The superalloys: fundamentals and applications, Cambridge university press. (2006).

Google Scholar

[3] C.T. Sims, N.S. Stoloff, W.C. Hagel, superalloys II. (1987).

Google Scholar

[4] D. Furrer, H. Fecht, Ni-based superalloys for turbine discs, JOM. 51 (1999) 14-17.

DOI: 10.1007/s11837-999-0005-y

Google Scholar

[5] M. Jackson, R. Reed, Heat treatment of UDIMET 720Li: the effect of microstructure on properties, Materials Science and Engineering: A. 259 (1999) 85-97.

DOI: 10.1016/s0921-5093(98)00867-3

Google Scholar

[6] E. Nembach, G. Neite, Precipitation hardening of superalloys by ordered γ'-particles, Progress in Materials Science. 29 (1985) 177-319.

DOI: 10.1016/0079-6425(85)90001-5

Google Scholar

[7] A. Szczotok, J. Richter, J. Cwajna, Stereological characterization of γ' phase precipitation in CMSX-6 monocrystalline nickel-base superalloy, Materials Characterization. 60 (2009) 1114-1119.

DOI: 10.1016/j.matchar.2009.01.023

Google Scholar

[8] H. Penkalla, J. Wosik, A. Czyrska-Filemonowicz, Quantitative microstructural characterisation of Ni-base superalloys, Materials chemistry and physics. 81 (2003) 417-423.

DOI: 10.1016/s0254-0584(03)00037-3

Google Scholar

[9] J. Tiley, G. Viswanathan, J. Hwang, A. Shiveley, R. Banerjee, Evaluation of gamma prime volume fractions and lattice misfits in a nickel base superalloy using the external standard X-ray diffraction method, Materials science and engineering: a. 528 (2010).

DOI: 10.1016/j.msea.2010.07.036

Google Scholar

[10] G. Vander Voort, Metallography of superalloys, Industrial heating. 70 (2003) 40-43.

Google Scholar

[11] G.F.V. Voort, G.M. Lucas, E.P. Manilova, Metallography and Microstructures of Heat-Resistant Alloy, Materials Park, OH: ASM International. (2004) 820-859.

DOI: 10.31399/asm.hb.v09.a0003737

Google Scholar

[12] H. Monajati, M. Jahazi, R. Bahrami, S. Yue, The influence of heat treatment conditions on γ' characteristics in Udimet® 720, Materials Science and Engineering: A. 373 (2004) 286-293.

DOI: 10.1016/j.msea.2004.01.027

Google Scholar

[13] A.H. T. Grosdidier, A. Simon, Precipitation and dissolution processes in γ/γ' single crystal nickel-based superalloys, Materials Science and Engineering :A. 256 (1998) 183–196.

DOI: 10.1016/s0921-5093(98)00795-3

Google Scholar

[14] M.J.B. Agnieszka M. Wusatowska-Sarnek, Mark Aindow, Techniques for microstructural characterization of powder-processed nickel-based superalloys, Materials Science and Engineering :A. 360 (2003) 390-395.

DOI: 10.1016/s0921-5093(03)00498-2

Google Scholar

[15] G.F. Vander Voort, Metallography, principles and practice, ASM International. (1984).

Google Scholar

[16] R. Salehi, A. Samadi, M.K. Savadkoohi, Influence of Etchants on Quantitative/Qualitative Evaluations of the γ' Precipitates in a Nickel-Base Superalloy, Metallography, Microstructure, and Analysis. 1 (2012) 290-296.

DOI: 10.1007/s13632-012-0043-7

Google Scholar

[17] H. -Y. Lee, M. Demura, Y. Xu, D. -M. Wee, T. Hirano, Selective dissolution of the γ phase in a binary Ni(γ)/Ni3Al(γ') two-phase alloy, Corrosion Science. 52 (2010) 3820-3825.

DOI: 10.1016/j.corsci.2010.07.036

Google Scholar

[18] B. Company, Buehler's guide to materials preparation. (2002).

Google Scholar

[19] M.J. Donachie Jr, O.H. Kriege, Phase Extraction and Analysis in Superalloys-Summary of Investigations by ASTM Committee E-4 Task Group 1, J. Mater. 7 (1972) 269-278.

Google Scholar

[20] O. Kriege, Phase Separation as a Technique for the Characterization of Superalloys, STP. 557 (1974) 220-234.

Google Scholar

[21] E. Van Der Molen, J. Oblak, O. Kriege, Control of γ' particle size and volume fraction in the high temperature superalloy Udimet 700, Metallurgical Transactions. 2 (1971) 1627-1633.

DOI: 10.1007/bf02913886

Google Scholar

[22] E. Payton, P. Phillips, M. Mills, Semi-automated characterization of the phase in Ni-based superalloys via high-resolution backscatter imaging, Materials Science and Engineering: A. 527 (2010) 2684-2692.

DOI: 10.1016/j.msea.2009.12.037

Google Scholar

[23] C. Qiu, X. Wu, J. Mei, P. Andrews, W. Voice, Influence of heat treatment on microstructure and tensile behavior of a hot isostatically pressed nickel-based superalloy, Journal of Alloys and Compounds. 578 (2013) 454-464.

DOI: 10.1016/j.jallcom.2013.06.045

Google Scholar