Fabrication of Transparent Hydrophilic Nanosized TiO2 Films via Layer-by-Layer Self-Assembly

Article Preview

Abstract:

The transparent nanosized TiO2 film was fabricated by a layer-by-layer assembly method starting from the highly dispersed anatase oppositely charged TiO2 nanoparticles without using anypoly electrolytes. The positively charged TiO2 nanoparticles (ca.7 nm) and negatively charged TiO2 nanoparticles (ca.7 nm) were synthesized by a subsequently hydrothermal process. Field-emission scanning electron microscopy, UV-vis transmittance spectra and Contact angle measurement were employed to characterize TiO2films.By the treatment of 500°C for 2hrs, the nanostructured TiO2 film showed a water contact angle of below 10°andthe relative transmittance to quartz glass of over 90%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1075-1079

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Anandan, S.; Rao, T. N.; Sathish, M.; Rangappa, D.; Honma, I.; Miyauchi, M. Super hydrophilic Graphene-Loaded TiO2 Thin Film forSelf-Cleaning Applications. ACS Appl. Mater. Interfaces 2013, 5, 207−212.

DOI: 10.1021/am302557z

Google Scholar

[2] Shi, F.; Wang, Z.; Zhang, X. Combining a Layer-by-Layer Assembling Technique with Electrochemical Deposition of Gold Aggregates to Mimic the Legs of Water Striders. Adv. Mater. 2005, 17, 1005−1009.

DOI: 10.1002/adma.200402090

Google Scholar

[3] Wu, D.; Wu, S. Z.; Chen, Q. D.; Zhang, Y. L.; Yao, J.; Yao, X.; Niu, L. G.; Wang, J. N.; Jiang, L.; Sun, H. B. Curvature-Driven Reversible In Situ Switching Between Pinned and Roll-Down Super hydrophobic States for Water Droplet Transportation. Adv. Mater. 2011, 23, 545−549.

DOI: 10.1002/adma.201001688

Google Scholar

[4] Lai Y.K.; Tang, Y. X.; Gong, J. J.; Gong, D. G.; Chi, L. F.; Lin, C.J.; Chen, Z. Transparent Super hydrophobic/SuperhydrophilicTiO2BasedCoatingsfor Self-Cleaning and Anti-Fogging. J. Mater. Chem. 2012, 22, 7420−7426.

DOI: 10.1039/c2jm16298a

Google Scholar

[5] W. Kubo, T. Tatsuma, J. Mater. Chem. 15 (2005) 3104.

Google Scholar

[6] Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol., C 2000, 1, 1.

Google Scholar

[7] Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K. J. Phys. Chem. B 2001, 105, 3023.

Google Scholar

[8] M.C. Yang, T.S. Yang, M.S. Wong, Thin Solid Films 469–470 (2004) 1.

Google Scholar

[9] Wenzel, R. N. Ind. Eng. Chem. 1936, 28, 988.

Google Scholar

[10] Daeyeon Lee, Michael F. Rubner, Nano Lett., Vol. 6, No. 10, (2006).

Google Scholar

[11] F.C. Cebeci, Z. Wu, L. Zhai, R.E. Cohen, M.F. Rubner, Langmuir 22(2006) 2856.

Google Scholar

[12] S. Li, Y.G. Li, H.Z. Wang, W.G. Fan, Q.H. Zhang, Eur. J. Inorg. Chem. (2009) 4078.

Google Scholar

[13] Sujun Yuan, Jiuke Mu, Ruiyi Mao, ACS Appl. Mater. Interfaces 2014, 6, 5719−5725.

Google Scholar

[14] Kim, T. -H.; Sohn, B. -H. Appl. Surf. Sci. 2002, 201, 109−114.

Google Scholar

[15] A.O.T. Patrocinio, L.G. Paterno, N.Y. Murakami Iha, J. Photochem. Photobiol. A: Chem. 205 (2009) 23.

Google Scholar

[16] Cebeci, F. C.; Wu, Z. Z.; Zhai, L.; Cohen, R. E.; Rubner, M. F. Langmuir 2006, 22, 2856-2862.

Google Scholar