[1]
S. Matthews, B. James, M. Hyland, High temperature erosion–oxidation of Cr3C2–NiCr thermal spray coatings under simulated turbine conditions, Corrosion Science 70 (2013) 203–211.
DOI: 10.1016/j.corsci.2013.01.030
Google Scholar
[2]
S. S. Chatha, H. S. Sidhu, B. S. Sidhu, High temperature hot corrosion behaviour of NiCr and Cr3C2–NiCr coatings on T91 boiler steel in an aggressive environment at 750 °C, Surface and Coatings Technology 206 (2012) 3839-3850.
DOI: 10.1016/j.surfcoat.2012.01.060
Google Scholar
[3]
S. Kamal, R. Jayaganthan, S Prakash, Evaluation of cyclic hot corrosion behaviour of detonation gun sprayed Cr3C2–25%NiCr coatings on nickel- and iron-based superalloys, Surface and Coatings Technology 203 (2009) 1004-1013.
DOI: 10.1016/j.surfcoat.2008.09.031
Google Scholar
[4]
J.K.N. Murthy, B. Venkataraman, Abrasive wear behaviour of WC–CoCr and Cr3C2–20(NiCr) deposited by HVOF and detonation spray processes, Surface and Coatings Technology 200 (2006) 2642-2652.
DOI: 10.1016/j.surfcoat.2004.10.136
Google Scholar
[5]
C.B. Huang, L.Z. Du, W.G. Zhang, Microstructure, mechanical and tribological characteristics of plasma, detonation gun and HVOF sprayed NiCr/Cr3C2-BaF2. CaF2 coatings, Surface Engineering 27(2011)762-769.
DOI: 10.1179/1743294411y.0000000007
Google Scholar
[6]
J.K.N. Murthy, S. Bysakh, K. Gopinath, B. Venkataraman, Microstructure dependent erosion in Cr3C2–20(NiCr) coating deposited by a detonation gun, Surface and Coatings Technology 202 (2007) 1–12.
DOI: 10.1016/j.surfcoat.2007.03.017
Google Scholar
[7]
S. Matthews, M. Hyland, B. James, Microhardness variation in relation to carbide developmentin heat treated Cr3C2–NiCr thermal spray coatings, Acta Materialia 51 (2003) 4267–4277.
DOI: 10.1016/s1359-6454(03)00254-4
Google Scholar
[8]
D.V. Dudinaa, I.S. Batraevb, V.Y. Ulianitsky, M.A. Korchagina, Possibilities of the Computer- Controlled Detonation Spraying method: A chemistry view point, Ceramics International 40 (2014) 3253–3260.
DOI: 10.1016/j.ceramint.2013.09.111
Google Scholar
[9]
A. Shtertser, C. Muders, S. Veselov, S. Zlobin, V. Ulianitsky, X. Jiang, V. Bataev, Computer controlled detonation spraying of WC/Co coatings containing MoS2 solid lubricant, Surface and Coatings Technology 206 (2012) 4763–4770.
DOI: 10.1016/j.surfcoat.2012.03.043
Google Scholar
[10]
T.G. Wang, S.S. Zhao, W.G. Hua, J.B. Li, J. Gong, C. Sun, Estimation of residual stress and its effects on the mechanical properties of detonation gun sprayed WC–Co coatings, Materials Science and Engineering A 527 (2010) 454–461.
DOI: 10.1016/j.msea.2009.10.009
Google Scholar
[11]
Y.J. Cui, C.L. Wang, Z.H. Tang, X.Y. Zhang, Microstructure and Performance of WC-17Co Coatings Fabricated by High Velocity Oxy-fuel Spraying, Journal of Materials Engineering 11(2011)85-88.
Google Scholar
[12]
C.W. Lee, J.H. Han, J. Yoon , M.C. Shin, S.I. Kwun. A study on powder mixing for high fracture toughness and wear resistance of WC-Co-Cr coatings sprayed by HVOF, Surface & Coatings Technology 204 (2010) 2223–2229.
DOI: 10.1016/j.surfcoat.2009.12.014
Google Scholar
[13]
D.V. Dudina, I.S. Batraev, V.Y. Ulianitsky, M.A. Korchagina, Possibilities of the Computer-Controlled Detonation Spraying method: A chemistry viewpoint, Ceramics International, with Industrial Ceramics, Volume 40, Issue 2, 2014, Pages 3253-3260.
DOI: 10.1016/j.ceramint.2013.09.111
Google Scholar
[14]
V. Ulianitsky, A. Shtertser, S. Zlobin, I. Smurov, Computer-Controlled Detonation Spraying: From Process Fundamentals Toward Advanced Applications, Journal of Thermal Spray Technology 20(2011) 791-801.
DOI: 10.1007/s11666-011-9649-6
Google Scholar
[15]
S. Matthews a, B. James , M. Hyland, The role of microstructure in the high temperature oxidation mechanism of Cr3C2–NiCr composite coatings, Corrosion Science 51 (2009) 1172–1180.
DOI: 10.1016/j.corsci.2009.02.027
Google Scholar
[16]
E. Kadyrov, Gas-particle interaction in detonation spraying systems, Journal of Thermal Spray Technology Volume 5 (1996)185-195.
DOI: 10.1007/bf02646432
Google Scholar