Research Progress in Cellulose Extraction, Modification and Application

Article Preview

Abstract:

As the fossil resource supply situation become more serious and the increasingly serious environment problems, the development of new carbon resource utilization has become an urgent task. Plant cellulose is the most abundant natural resource, which is renewable, nontoxic and degradable, has been paid much attrition by researchers of many countries. This paper reviews recent progress in plant cellulose extract and modification, especially in chemical modification of cellulose derivatives. And the article described cellulose modification technology about pretreatment. The applications of modified cellulose in the field of environmental protection, pharmaceutical, paint and other industries introduced as well. Finally, the current research hotspots of cellulose modification technology were prospected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1194-1200

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhang Xiaoyang, Du Fengguang: Cellulosic biomass hydrolysis and application (Zhengzhou: Zhengzhou University Press, 2012).

Google Scholar

[2] Pei Jicheng: Chemical of plant fiber (Beijing: China Light Industry Press, 2012).

Google Scholar

[3] Li Zhongzheng: Chemical of plant fiber resource (Beijing: China Light Industry Press, 2012).

Google Scholar

[4] Gao Zhenghua, Di Mingwei: Biomass materials and application (Beijing: Chemical Industry Press, 2008).

Google Scholar

[5] Hu Yujie, He Chunju: Natural polymer materials (Beijing: chemical Industry Press, 2012).

Google Scholar

[6] Zhang Jingqiang, Lin Lu, et al: Chemistry and Industry of Forest Products , 2008, 28(6): 109-114.

Google Scholar

[7] Pan Meiling: Preparation and Properties of Reed Cellulose Membrane (Ph.D., Tianjin University of Technology, 2013).

Google Scholar

[8] Yin Xianggang, Hua Junkai: Journal of Cellulose Science and Technology, 2006, 14(3): 41-46.

Google Scholar

[9] Man Chen, Yonghong Ma, Yang Xu, et al: Polymer-Plastics Technology and Engineering, 2013, 52(15): 1566-1573.

Google Scholar

[10] Bibin Mathew Cherian, Alcides Lopes Leao, et al: Carbohydrate Polymers, 2010, 81: 720-725.

Google Scholar

[11] C. Uma Maheswari, K. Obi Reddy, E. Muzenda, et al: Biomass and Bioenergy, 2012, 46: 555-563.

DOI: 10.1016/j.biombioe.2012.06.039

Google Scholar

[12] Ioan Bicu, Fanica Mustata: Bioresource Technology, 2011, 102(21): 10013-10019.

DOI: 10.1016/j.biortech.2011.08.041

Google Scholar

[13] Yoldas Seki, Mehmet Sarikanat, Kutlay Sever, et al: Composites: Part B, 2013, 44(1): 517-523.

Google Scholar

[14] Weizun Li, Meiting Ju, Yannan Wang, et al: carbohydrate Polymer, 2013, 92(1): 228-235.

Google Scholar

[15] Gu Qing: Isolation of Highly Purified Cellulose from Wheat Straw and Its Application (Ph.D., University of Science and Technology of China, 2009).

Google Scholar

[16] Masayuki Hirota, Naoyuki Tamura, Tsuguyuki Saito, et al: Cellulose, 2009, 16(5): 841-851.

Google Scholar

[17] Liu Gang, Han Qing, Xia Anjun: China Pulp & Paper Industry , 2008(7): 50-53.

Google Scholar

[18] Zhao Bing, Lin Hong, Chen Yuyue: Advance Textile Technology , 2013(5): 58-60.

Google Scholar

[19] Wang Xiangling, Fang Guizhen, Dai Xiaofeng, et al: Scientia Silvae Sinicae , 2011, 47(4): 141-147.

Google Scholar

[20] Zhijun Li, Dong Zhang, Jiabao Weng, et al: Carbohydrate Polymers, 2014, 99: 748-754.

Google Scholar

[21] Andreas Geissler, Markus Biesalski, Thomas Heinze, et al: J. Mater. Chem. A, 2014, 2: 1107-1116.

Google Scholar

[22] Li W Y, Jin A X, Liu C F, et al: Carbohydrate Polymers., 2009, 78(3): 389-395.

Google Scholar

[23] Xuefei Cao, Xinwen Peng, Linxin Zhong, et al: Cellulose, 2014, 21(1): 581-594.

Google Scholar

[24] Dahou W, Ghemati D, Oudia A, et al: Biochemical Engineering Journal, 2010, 48(2): 187-194.

DOI: 10.1016/j.bej.2009.10.006

Google Scholar

[25] Zhao Yanfeng: Tianjin Chemical Industry , 2006, 20(2): 11-13.

Google Scholar

[26] Hanna Lönnberg, Linda Fogelström, et al: European Polymer Journal, 2008, 44(9): 2991-2997.

Google Scholar

[27] Dejuan Lia, Yingjuan Fu, Menghua Qin: Advanced Materials Research Vols. 2013, 734-737, 2108-2112.

Google Scholar

[28] Tao Meng, Xia Gao, Zhang J, et al: Polymer, 2009, 50(2): 447-454.

Google Scholar

[29] Noriyuki Isobe, Xiaoxia Chen, Ung-Jin Kim, et al: Journal of Hazardous Materials, 2013, 260: 195-201.

Google Scholar

[30] Peng Liu, Houssine Sehaqui, Philippe Tingaut, et al: Cellulose, 2014, 21(1): 449-461.

Google Scholar

[31] Peyman Najafi Moghoddam, Mahsa Enadfi Awal, Amir Reza Fareghi: Colloid and Polymer science, 2014, 292(1): 77-84.

Google Scholar

[32] Katarina Novotna, Pavel Havelka, Tomas Sopuch, et al: Cellulose, 2013, 20(5): 2263-2278.

Google Scholar

[33] Weilu Cheng, Jinmei He, Yadong Wu, et al: Cellulose, 2013, 20(5): 2547-2558.

Google Scholar

[34] Fang Wu, Yong Zhang, Lin Liu, et al: Carbohydrate Polymers, 2012, 87(4): 2519-2525.

Google Scholar

[35] S.K. Shukla: International Journal of Biological Macromolecules, 2013, 62: 531-536.

Google Scholar