Bioactive and Antibacterial Ag-AgCl-TiO2 Coating on Titanium Implants

Article Preview

Abstract:

In this work, Ag-AgCl-TiO2 coating was fabricated on titanium substrates to obtain an implant material having excellent antibacterial property and bioactivity. The coating was investigated by scanning electron microscopy and X-ray diffraction. The bioactivity of coatings was examined by simulated body fluid soaking test. To verify the susceptibility of implant material surface to bacterial adhesion, S. aureus (Sau), E. coli (Eco), K. pneumoniae (Kpn), P. Aeruginosa (Pae), four types of major pathogen were chosen for in vitro antibacterial analyses. The results showed that Ag-AgCl-TiO2 coating had excellent antibacterial property and bioactivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1213-1219

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Stigter, J. Bezemer, K. de Groot, et al . Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release, 2004, 99(1): 127–137.

DOI: 10.1016/j.jconrel.2004.06.011

Google Scholar

[2] M. Stigter, K. de Groot, P. Layrolle. Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials, 2002, 23(20)4143–4153.

DOI: 10.1016/s0142-9612(02)00157-6

Google Scholar

[3] S. Radin, J.T. Campbell, P. Ducheyne, et al . Calcium phosphate ceramic coatings as carriers of vancomycin. Biomaterials, 1997, 18(11)777–782.

DOI: 10.1016/s0142-9612(96)00190-1

Google Scholar

[4] V. J. Antoci, C.S. Adams, N.J. Hickok, et al. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin Orthop Relat Res, 2007, 462: 200–206.

DOI: 10.1097/blo.0b013e31811ff866

Google Scholar

[5] A. Ince, N. Schutze, C. Hendrich, et al. Effect of polyhexanide and gentamycin on human osteoblasts and endothelial cells. Swiss Med Wkly, 2007, 137: 139–145.

DOI: 10.4414/smw.2007.11434

Google Scholar

[6] A. Ince, N. Schutze, C. Hendrich, et al. In vitro investigation of orthopedic titanium-coated and brushite-coated surfaces using human osteoblasts in the presence of gentamycin. J Arthroplasty, 2008, 23(5)762–771.

DOI: 10.1016/j.arth.2007.06.018

Google Scholar

[7] A. Melaiye W.J. Youngs. Silver and its application as an antimicrobial agent. Expert Opin Ther Pat, 2005, 15(2)125–130.

DOI: 10.1517/13543776.15.2.125

Google Scholar

[8] J.X. Li, J. Wang, L.R. Shen, et al. The influence of polyethylene terephthalate surfaces modified by silver ion implantation on bacterial adhesion behavior. Surf Coat Techno, 2007, 201 (19-20) 8155–8159.

DOI: 10.1016/j.surfcoat.2006.02.069

Google Scholar

[9] S.L. Percival, P.G. Bowler, D. Russell . Bacterial resistance to silver in wound care. J Hosp Infect, 2005, 60(1)1–7.

Google Scholar

[10] M. Bosetti, A. Masse, E. Tobin, et al. Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity. Biomaterials, 2002, 23(3)887–892.

DOI: 10.1016/s0142-9612(01)00198-3

Google Scholar

[11] J. Hardes , H. Ahrens , C. Gebert, et al. Lack of toxicological side-effects in silvercoated megaprostheses in humans. Biomaterials, 2007, 28(18)2869–2875.

DOI: 10.1016/j.biomaterials.2007.02.033

Google Scholar

[12] G. Gosheger, J. Hardes, H. Ahrens, et al. Silver-coated megaendoprostheses in a rabbit model–an analysis of the infection rate and toxicological side effects. Biomaterials, 2004, 25(24) 5547–5556.

DOI: 10.1016/j.biomaterials.2004.01.008

Google Scholar

[13] W. Zhang, Y. Luo, H. Wang, et al. Ag and Ag/N2 plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation. Acta Biomater, 2008, 4(6) 2028–(2036).

DOI: 10.1016/j.actbio.2008.05.012

Google Scholar

[14] S.C.H. Kwok, W. Zhang, G.J. Wan, et al. Hemocompatibility and anti-bacterial properties of silver doped diamond-like carbon prepared by pulsed filtered cathodic vacuum arc deposition. Diamond Relat Mater, 2007, 16(4-7)1353–1360.

DOI: 10.1016/j.diamond.2006.11.001

Google Scholar

[15] A. Ewald, S.K. Gluckermann, R. Thullet al. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online, 2006, 5: 22–27.

DOI: 10.1186/1475-925x-5-22

Google Scholar

[16] W. Chen, Y. Liu, H.S. Courtney, et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials, 2006, 27 (32) 5512–5517.

DOI: 10.1016/j.biomaterials.2006.07.003

Google Scholar

[17] H. Tsuchiya, J.M. Macak, L. Muller, et al. Hydroxyapatite growth on anodic TiO2 nanotubes. Journal of Biomedical Materials Research Part A, 2006, 77A(3): 534–541.

DOI: 10.1002/jbm.a.30677

Google Scholar

[18] V. Zwilling , E. Darque-Ceretti , A. Boutry-Forveille, et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal, 1999, 27(7)629–637.

DOI: 10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0

Google Scholar

[19] D. Gong, C.A. Grimes, O.K. Varghese, et al . . Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res, 2001, 16(1)3331–3334.

DOI: 10.1557/jmr.2001.0457

Google Scholar

[20] R. Beranek, H. Hildebrand, P. Schmuki. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem Solid-State Lett, 2003, 6(3)B12–B14.

DOI: 10.1149/1.1545192

Google Scholar

[21] T. Kokubo, H. Kushitani, S. Sakka, et al. Solutions Able to Reproduce in Vivo Surface Changes in Bioactive Glass-CeramicA-W3. J Biomed Mater Res, 1990, 24(6): 721–724.

DOI: 10.1002/jbm.820240607

Google Scholar

[22] T. Kasuga, H. Kondo, M. Nogami. Apatite formation on TiO2 in simulated body fluid. J Crystal Growth, 2002, 235(1-4): 235–240.

DOI: 10.1016/s0022-0248(01)01782-1

Google Scholar

[23] H. Takadama, H.M. Kim, T. Kokubo, et al. XPS study of the process of apatite formation on bioactive Ti-6Al-4V alloy in simulated body fluid. Sci Tech Adv Mater, 2001, 2(2): 389–396.

DOI: 10.1016/s1468-6996(01)00007-9

Google Scholar

[24] G. Colon, B.C. Ward, T.J. Webster. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2.J. Biomed. Mater. Res. A, 2006, 78(3): 595-604.

DOI: 10.1002/jbm.a.30789

Google Scholar

[25] X. Zhu, J. Chen, L. Scheideler, et al. Effects of topography and composition of titanium surface oxides on osteoblast responses, Biomaterials, 2004, 25(18): 4087-4103.

DOI: 10.1016/j.biomaterials.2003.11.011

Google Scholar

[26] O. Choi, K. K. Deng, N. J. Kim, et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res., 2008, 42(12): 3066-3074.

DOI: 10.1016/j.watres.2008.02.021

Google Scholar