[1]
M. Stigter, J. Bezemer, K. de Groot, et al . Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release, 2004, 99(1): 127–137.
DOI: 10.1016/j.jconrel.2004.06.011
Google Scholar
[2]
M. Stigter, K. de Groot, P. Layrolle. Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials, 2002, 23(20)4143–4153.
DOI: 10.1016/s0142-9612(02)00157-6
Google Scholar
[3]
S. Radin, J.T. Campbell, P. Ducheyne, et al . Calcium phosphate ceramic coatings as carriers of vancomycin. Biomaterials, 1997, 18(11)777–782.
DOI: 10.1016/s0142-9612(96)00190-1
Google Scholar
[4]
V. J. Antoci, C.S. Adams, N.J. Hickok, et al. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin Orthop Relat Res, 2007, 462: 200–206.
DOI: 10.1097/blo.0b013e31811ff866
Google Scholar
[5]
A. Ince, N. Schutze, C. Hendrich, et al. Effect of polyhexanide and gentamycin on human osteoblasts and endothelial cells. Swiss Med Wkly, 2007, 137: 139–145.
DOI: 10.4414/smw.2007.11434
Google Scholar
[6]
A. Ince, N. Schutze, C. Hendrich, et al. In vitro investigation of orthopedic titanium-coated and brushite-coated surfaces using human osteoblasts in the presence of gentamycin. J Arthroplasty, 2008, 23(5)762–771.
DOI: 10.1016/j.arth.2007.06.018
Google Scholar
[7]
A. Melaiye W.J. Youngs. Silver and its application as an antimicrobial agent. Expert Opin Ther Pat, 2005, 15(2)125–130.
DOI: 10.1517/13543776.15.2.125
Google Scholar
[8]
J.X. Li, J. Wang, L.R. Shen, et al. The influence of polyethylene terephthalate surfaces modified by silver ion implantation on bacterial adhesion behavior. Surf Coat Techno, 2007, 201 (19-20) 8155–8159.
DOI: 10.1016/j.surfcoat.2006.02.069
Google Scholar
[9]
S.L. Percival, P.G. Bowler, D. Russell . Bacterial resistance to silver in wound care. J Hosp Infect, 2005, 60(1)1–7.
Google Scholar
[10]
M. Bosetti, A. Masse, E. Tobin, et al. Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity. Biomaterials, 2002, 23(3)887–892.
DOI: 10.1016/s0142-9612(01)00198-3
Google Scholar
[11]
J. Hardes , H. Ahrens , C. Gebert, et al. Lack of toxicological side-effects in silvercoated megaprostheses in humans. Biomaterials, 2007, 28(18)2869–2875.
DOI: 10.1016/j.biomaterials.2007.02.033
Google Scholar
[12]
G. Gosheger, J. Hardes, H. Ahrens, et al. Silver-coated megaendoprostheses in a rabbit model–an analysis of the infection rate and toxicological side effects. Biomaterials, 2004, 25(24) 5547–5556.
DOI: 10.1016/j.biomaterials.2004.01.008
Google Scholar
[13]
W. Zhang, Y. Luo, H. Wang, et al. Ag and Ag/N2 plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation. Acta Biomater, 2008, 4(6) 2028–(2036).
DOI: 10.1016/j.actbio.2008.05.012
Google Scholar
[14]
S.C.H. Kwok, W. Zhang, G.J. Wan, et al. Hemocompatibility and anti-bacterial properties of silver doped diamond-like carbon prepared by pulsed filtered cathodic vacuum arc deposition. Diamond Relat Mater, 2007, 16(4-7)1353–1360.
DOI: 10.1016/j.diamond.2006.11.001
Google Scholar
[15]
A. Ewald, S.K. Gluckermann, R. Thullet al. Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online, 2006, 5: 22–27.
DOI: 10.1186/1475-925x-5-22
Google Scholar
[16]
W. Chen, Y. Liu, H.S. Courtney, et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials, 2006, 27 (32) 5512–5517.
DOI: 10.1016/j.biomaterials.2006.07.003
Google Scholar
[17]
H. Tsuchiya, J.M. Macak, L. Muller, et al. Hydroxyapatite growth on anodic TiO2 nanotubes. Journal of Biomedical Materials Research Part A, 2006, 77A(3): 534–541.
DOI: 10.1002/jbm.a.30677
Google Scholar
[18]
V. Zwilling , E. Darque-Ceretti , A. Boutry-Forveille, et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal, 1999, 27(7)629–637.
DOI: 10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0
Google Scholar
[19]
D. Gong, C.A. Grimes, O.K. Varghese, et al . . Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res, 2001, 16(1)3331–3334.
DOI: 10.1557/jmr.2001.0457
Google Scholar
[20]
R. Beranek, H. Hildebrand, P. Schmuki. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem Solid-State Lett, 2003, 6(3)B12–B14.
DOI: 10.1149/1.1545192
Google Scholar
[21]
T. Kokubo, H. Kushitani, S. Sakka, et al. Solutions Able to Reproduce in Vivo Surface Changes in Bioactive Glass-CeramicA-W3. J Biomed Mater Res, 1990, 24(6): 721–724.
DOI: 10.1002/jbm.820240607
Google Scholar
[22]
T. Kasuga, H. Kondo, M. Nogami. Apatite formation on TiO2 in simulated body fluid. J Crystal Growth, 2002, 235(1-4): 235–240.
DOI: 10.1016/s0022-0248(01)01782-1
Google Scholar
[23]
H. Takadama, H.M. Kim, T. Kokubo, et al. XPS study of the process of apatite formation on bioactive Ti-6Al-4V alloy in simulated body fluid. Sci Tech Adv Mater, 2001, 2(2): 389–396.
DOI: 10.1016/s1468-6996(01)00007-9
Google Scholar
[24]
G. Colon, B.C. Ward, T.J. Webster. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2.J. Biomed. Mater. Res. A, 2006, 78(3): 595-604.
DOI: 10.1002/jbm.a.30789
Google Scholar
[25]
X. Zhu, J. Chen, L. Scheideler, et al. Effects of topography and composition of titanium surface oxides on osteoblast responses, Biomaterials, 2004, 25(18): 4087-4103.
DOI: 10.1016/j.biomaterials.2003.11.011
Google Scholar
[26]
O. Choi, K. K. Deng, N. J. Kim, et al. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res., 2008, 42(12): 3066-3074.
DOI: 10.1016/j.watres.2008.02.021
Google Scholar