Synthesis and Characterization of Zeolitic Imidazolate Framework-8@Sodalite Composite Particles

Article Preview

Abstract:

We demonstrate the preparation of hierarchical porous structure composite particles containing sodalite cores,and outer zeolitic imidazolate framework-8 (ZIF-8) shells. The synthesis involved first synthesis of sodalite zeolites by hydrothermal reaction from alkali-activated kaolin with polyacrylamide acting as structure-directing agent, and followed by the directly in stu growth ZIF-8 nanoparticles shells over the sodalite microparticles. The resulting core shell structure ZIF-8@Sodalite composites were characterized by powder X-ray diffraction (PXRD) and scanning electron microscope (SEM) Nitrogen adsorption, Fourier Transform infrared spectroscopy (FTIR), hermogravimetry analysis (TGA) and differential thermal analysis (DTA). SEM picture showed ZIF-8 particles adhesive on the surface of Sodalite. The composites have a nitrogen sorption capability as high as around 120 cm3/g and a BET surface area of over 328.86 m2/g, which are much higher than that of pure sodalites. The weight percentage of ZIF-8 loading on sodalite external surface can be calculated to be approximately 12% by mass loss on the TG curves. It is believed that the designed ZIF-8@Sodalite particles could broaden the application areas of zeolites in heterogeneous catalysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1250-1255

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fan W, Morozumi K, Kimura R, Yokoi T, Okubo T. Synthesis of nanometer-sized sodalite without adding organic additives [J]. Langmuir : the ACS journal of surfaces and colloids. 2008; 24: 6952-8.

DOI: 10.1021/la703838j

Google Scholar

[2] Heiden F, Nielsen UG, Warner TE. Synthesis and thermal stability of the sodalite Na6Zn2[Al6Si6O24](SO4)(2) and its reaction with hydrogen [J]. Micropor Mesopor Mat. 2012; 161: 91-7.

DOI: 10.1016/j.micromeso.2012.05.020

Google Scholar

[3] Prokof'ev VY, Gordina NE. Preparation of granulated LTA and SOD zeolites from mechanically activated mixtures of metakaolin and sodium hydroxide [J]. Appl Clay Sci. 2014; 101: 44-51.

DOI: 10.1016/j.clay.2014.07.008

Google Scholar

[4] Schejn A, Balan L, Falk V, Aranda L, Medjahdi G, Schneider R. Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations [J]. Crystengcomm. 2014; 16: 4493-500.

DOI: 10.1039/c3ce42485e

Google Scholar

[5] Zhang T, Lin L, Zhang XF, Liu HO, Yan XJ, Qiu JS, et al. Synthesis and characterization of ZIF-8@SiO2@Fe3O4 core@double-shell microspheres with noble metal nanoparticles sandwiched between two shell layers [J]. Mater Lett. 2015; 148: 17-21.

DOI: 10.1016/j.matlet.2015.02.077

Google Scholar

[6] Wee LH, Janssens N, Sree SP, Wiktor C, Gobechiya E, Fischer RA, et al. Local transformation of ZIF-8 powders and coatings into ZnO nanorods for photocatalytic application [J]. Nanoscale. 2014; 6: 2056-60.

DOI: 10.1039/c3nr05289c

Google Scholar

[7] Wang ZQ, Dou ZS, Cui YJ, Yang Y, Wang ZY, Qian GD. Sulfur encapsulated ZIF-8 as cathode material for lithium-sulfur battery with improved cyclability [J]. Micropor Mesopor Mat. 2014; 185: 92-6.

DOI: 10.1016/j.micromeso.2013.11.011

Google Scholar

[8] Gao YL, Wu JX, Zhang W, Tan YY, Gao J, Zhao JC, et al. The calcined zeolitic imidazolate framework-8 (ZIF-8) under different conditions as electrode for supercapacitor applications. J Solid State Electr [J]. 2014; 18: 3203-7.

DOI: 10.1007/s10008-014-2578-9

Google Scholar

[9] Thompson JA, Vaughn JT, Brunelli NA, Koros WJ, Jones CW, Nair S. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas. Micropor Mesopor Mat [J]. 2014; 192: 43-51.

DOI: 10.1016/j.micromeso.2013.06.036

Google Scholar

[10] Zhao YJ, Pan YC, Liu W, Zhang LX. Removal of Heavy Metal Ions from Aqueous Solutions by Adsorption onto ZIF-8 Nanocrystals [J]. Chem Lett. 2015; 44: 758-60.

DOI: 10.1246/cl.150137

Google Scholar

[11] Zhang C, Dai Y, Johnson JR, Karvan O, Koros WJ. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations [J]. J Membrane Sci. 2012; 389: 34-42.

DOI: 10.1016/j.memsci.2011.10.003

Google Scholar

[12] Zhang GC, Zhang T, Zhang XF, Yeung KL. Continuous flow ZIF-8/NaA composite membrane microreactor for efficient Knoevenagel condensation [J]. Catal Commun. 2015; 68: 93-6.

DOI: 10.1016/j.catcom.2015.05.008

Google Scholar

[13] Gao F, Li YK, Bian ZJ, Hu J, Liu HL. Dynamic hydrophobic hindrance effect of zeolite@zeolitic imidazolate framework composites for CO2 capture in the presence of water [J]. J Mater Chem A. 2015; 3: 8091-7.

DOI: 10.1039/c4ta06645f

Google Scholar

[14] Hu Y, Kazemian H, Rohani S, Huang YN, Song Y. In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chem Commun [J]. 2011; 47: 12694-6.

DOI: 10.1039/c1cc15525c

Google Scholar

[15] Yao JF, Chen RZ, Wang K, Wang HT. Direct synthesis of zeolitic imidazolate framework-8/chitosan composites in chitosan hydrogels. Micropor Mesopor Mat [J]. 2013; 165: 200-4.

DOI: 10.1016/j.micromeso.2012.08.018

Google Scholar

[16] Pan YC, Liu YY, Zeng GF, Zhao L, Lai ZP. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system [J]. Chem Commun. 2011; 47: 2071-3.

DOI: 10.1039/c0cc05002d

Google Scholar