Biosynthesis Silver Nanoparticles Using Bacillus Amyloliquefaciens Zxw01 and Research on Synthesis Mechanism

Article Preview

Abstract:

This research reported on synthesis of silver nanoparticles using Bacillus amyloliquefaciens zxw01 culture mixed with silver nitrate. The nanoparticles were characterized by UV-vis spectrum, X-ray diffraction (XRD), Transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM).In addition, we discussed synthesis mechanism by comparing the protein files of the bacteria before and after mixed with silver nitrate and proteins attached to silver nanoparticles. Our results indicated that silver nanoparticles biosynthesized by Bacillus amyloliquefaciens zxw01 were equally distributed with size between 5 nm to 30 nm and face-centred cubic structure; results of SDS-PAGE suggested that after mixed with silver nitrate, the bacteria differentially expressed and produced a new protein with weight of 33 kDa. Furthermore, analysis of proteins attached to silver nanoparticles indicated that protein with weight of 33 kDa was related to the synthesis of silver nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

437-442

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] LI Hongxu, GUO Yunchi, LI An. et al: Materials Review, 2010, 24(12): 76-80.

Google Scholar

[2] ZHENG Bingyun, HUANG Jiale, SUN Daohua, et al: Journal of Xiamen University ( Natural Science), 2011, 50(2): 378-386.

Google Scholar

[3] R. J. Tanja Klaus*, Eva Olsson, Claes-Go Ran Granqvist: PNAS, 1999, 96(24): 13611 –13614.

Google Scholar

[4] G. Sathiyanarayanan, Kiran G. S. , Selvin J: Colloids and Surfaces B Biointerfaces, 2013, 102: 13-20.

Google Scholar

[5] S. Priyadarshini, Gopinath V., Meera Priyadharsshini N, et al: Colloids and Surfaces B Biointerfaces, 2013, 102: 232-237.

DOI: 10.1016/j.colsurfb.2012.08.018

Google Scholar

[6] D. Kalpana , Lee Y. S: Enzyme Microb Technol, 2013, 52(3): 151-156.

Google Scholar

[7] T. N. V. K. V. Prasad, Kambala V. S. R. and Naidu R: Journal of Applied Phycology, 2012, 25(1): 177-182.

Google Scholar

[8] R. Ramanathan, O'mullane A. P., Parikh R. Y., et al: Langmuir, 2011, 27(2): 714-719.

Google Scholar

[9] M. Vijayakumar, Priya K., Nancy F. T., et al: Industrial Crops and Products, 2013, 41: 235-240.

Google Scholar

[10] M. S. K. Mohammad Oves*, Almas Zaidi, Arham S. Ahmed, Faheem Ahmed, and Ejaz Ahmad A. S., Mohammad Owais, Ameer Azam: PLOS ONE, 2013, 8(3): 1-14.

Google Scholar

[11] P. Kumar, Govindaraju M., Senthamilselvi S., et al: Colloids and Surfaces B Biointerfaces, 2013, 103: 658-661.

DOI: 10.1016/j.colsurfb.2012.11.022

Google Scholar

[12] K. Jagajjanani Rao and Paria S: Materials Research Bulletin, 2013, 48(2): 628-634.

Google Scholar

[13] ZHANG Haoran, LI Qingbiao, SUN Daohua, et al: Precious Metals, 2005, 26 (2) : 51-56.

Google Scholar

[14] Sun Daohua, LI Qingbiao, Ling Xueping, Wang Lin, et al: Acta Scientiae Circumstantiae, 2006, 26(7): 1107-1110.

Google Scholar

[15] Fu Jinkun, LIU Yueying, Gu Pingying, et al: ACTA PHYSICO-CHIMICA SINICA, 2000, 16(9): 779-782.

Google Scholar

[16] K. Kalimuthu, Suresh Babu R., Venkataraman D., et al: Colloids and Surfaces B Biointerfaces, 2008, 65(1): 150-153.

DOI: 10.1016/j.colsurfb.2008.02.018

Google Scholar