Study of the Mechanical Deformation of Transforming Nanowires Constrained in Metal Matrix

Article Preview

Abstract:

We report the results of a simulation study of the mechanical deformation of NiAl nanowires constrained in Al metal matrix. The constrained nanowires showed high elastic yield stress and nonelastic stretching via a transition from the B2 to BCT phase. The phase transformation mechanism was that of atomic shuffling, via the appearance, spreading, and aggregation of isolated defect atoms, instead of dislocation movement. Because of geometry constraints, the interphase energy between the new and parent phases is not readily released, which results in strain hardening.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

449-453

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] HAO Shijie, CUI Lishan, JIANG Daqiang, et al. A Transforming Metal Nanocomposite with Large Elastic Strain, Low Modulus, and High Strength [J]. Science, 2013, 339: 1191-1194.

Google Scholar

[2] JOSEFSSON Gabriella, BERTHOLD Fredrik, and GAMSTEDT E. Kristofer. Stiffness contribution of cellulose nanofibrils to composite materials [J]. International Journal of Solids and Structures, 2014, 51: 945-953.

DOI: 10.1016/j.ijsolstr.2013.11.018

Google Scholar

[3] JIANG Daqiang, HAO Shijie, ZHANG Junsong, et al. In situ synchrotron investigation of the deformation behavior of nanolamellar Ti5Si3/TiNi composite [J]. Scripta Materialia, 2014, 78-79: 53-56.

DOI: 10.1016/j.scriptamat.2014.01.034

Google Scholar

[4] BILGE K., VENKATARAMAN S., MENCELOGLU Y. Z., et al. Global and local nanofibrous interlayer toughened composites for higher in-plane strength [J]. Composites Part A Applied Science and Manufacturing, 2014, 58: 73-76.

DOI: 10.1016/j.compositesa.2013.12.001

Google Scholar

[5] LUO S. D., LI Q., TIAN J., et al. Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties [J]. Scripta Materialia, 2013, 69: 29-32.

DOI: 10.1016/j.scriptamat.2013.03.017

Google Scholar

[6] ZHOU Min. Exceptional Properties by Design [J]. Science, 2013, 339: 1161-1162.

Google Scholar

[7] PARK H. S. Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires [J]. Nano Letters, 2006, 6: 958-962.

DOI: 10.1021/nl060024p

Google Scholar

[8] LIANG W., ZHOU M., and KE F. Shape memory effect in Cu nanowires [J]. Nano Letters, 2005, 5: 2039-(2043).

DOI: 10.1021/nl0515910

Google Scholar

[9] ZHENG Bin, NONG WANG Yi, QI Min, et al. Phase boundary effects on the mechanical deformation of core/shell Cu/Ag nanoparticles [J]. Journal of Materials Research, 2009, 24: 2210-2214.

DOI: 10.1557/jmr.2009.0263

Google Scholar

[10] MISHIN Y. Atomistic modeling of the γ and γ'-phases of the Ni–Al system [J]. Acta Materialia, 2004, 52: 1451-1467.

DOI: 10.1016/j.actamat.2003.11.026

Google Scholar

[11] ZHENG Bin and LOWTHER John E. Numerical investigations into mechanical properties of hexagonal silicon carbon nanowires and nanotubes [J]. Nanoscale, 2010, 2: 1733-1739.

DOI: 10.1039/c0nr00119h

Google Scholar

[12] http: /lammps. sandia. gov/index. html.

Google Scholar

[13] PLIMPTON S. Fast Parallel Algorithms for Short-Range Molecular-Dynamics [J]. Journal of Computational Physics, 1995, 117: 1-19.

DOI: 10.1006/jcph.1995.1039

Google Scholar

[14] HOOVER W. G. Canonical dynamics: Equilibrium phase-space distributions [J]. Physical Review A, 1985, 31: 1695-1697.

DOI: 10.1103/physreva.31.1695

Google Scholar

[15] NOSE S. A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods [J]. Journal of Chemical Physics, 1984, 81: 511-519.

Google Scholar

[16] CHEN Jiuhua, WEIDNER Donald J., PARISE John B., et al. Observation of cation reordering during the olivine-spinel transition in fayalite by in situ synchrotron X-ray diffraction at high pressure and temperature [J]. Physical Review Letters, 2001, 86: 4072-4075.

DOI: 10.1103/physrevlett.86.4072

Google Scholar

[17] PORTER D.A. and EASTERLING K.E., Phase transformations in metals and alloys. 1992: Chapman & Hall.

Google Scholar