[1]
HAO Shijie, CUI Lishan, JIANG Daqiang, et al. A Transforming Metal Nanocomposite with Large Elastic Strain, Low Modulus, and High Strength [J]. Science, 2013, 339: 1191-1194.
Google Scholar
[2]
JOSEFSSON Gabriella, BERTHOLD Fredrik, and GAMSTEDT E. Kristofer. Stiffness contribution of cellulose nanofibrils to composite materials [J]. International Journal of Solids and Structures, 2014, 51: 945-953.
DOI: 10.1016/j.ijsolstr.2013.11.018
Google Scholar
[3]
JIANG Daqiang, HAO Shijie, ZHANG Junsong, et al. In situ synchrotron investigation of the deformation behavior of nanolamellar Ti5Si3/TiNi composite [J]. Scripta Materialia, 2014, 78-79: 53-56.
DOI: 10.1016/j.scriptamat.2014.01.034
Google Scholar
[4]
BILGE K., VENKATARAMAN S., MENCELOGLU Y. Z., et al. Global and local nanofibrous interlayer toughened composites for higher in-plane strength [J]. Composites Part A Applied Science and Manufacturing, 2014, 58: 73-76.
DOI: 10.1016/j.compositesa.2013.12.001
Google Scholar
[5]
LUO S. D., LI Q., TIAN J., et al. Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties [J]. Scripta Materialia, 2013, 69: 29-32.
DOI: 10.1016/j.scriptamat.2013.03.017
Google Scholar
[6]
ZHOU Min. Exceptional Properties by Design [J]. Science, 2013, 339: 1161-1162.
Google Scholar
[7]
PARK H. S. Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires [J]. Nano Letters, 2006, 6: 958-962.
DOI: 10.1021/nl060024p
Google Scholar
[8]
LIANG W., ZHOU M., and KE F. Shape memory effect in Cu nanowires [J]. Nano Letters, 2005, 5: 2039-(2043).
DOI: 10.1021/nl0515910
Google Scholar
[9]
ZHENG Bin, NONG WANG Yi, QI Min, et al. Phase boundary effects on the mechanical deformation of core/shell Cu/Ag nanoparticles [J]. Journal of Materials Research, 2009, 24: 2210-2214.
DOI: 10.1557/jmr.2009.0263
Google Scholar
[10]
MISHIN Y. Atomistic modeling of the γ and γ'-phases of the Ni–Al system [J]. Acta Materialia, 2004, 52: 1451-1467.
DOI: 10.1016/j.actamat.2003.11.026
Google Scholar
[11]
ZHENG Bin and LOWTHER John E. Numerical investigations into mechanical properties of hexagonal silicon carbon nanowires and nanotubes [J]. Nanoscale, 2010, 2: 1733-1739.
DOI: 10.1039/c0nr00119h
Google Scholar
[12]
http: /lammps. sandia. gov/index. html.
Google Scholar
[13]
PLIMPTON S. Fast Parallel Algorithms for Short-Range Molecular-Dynamics [J]. Journal of Computational Physics, 1995, 117: 1-19.
DOI: 10.1006/jcph.1995.1039
Google Scholar
[14]
HOOVER W. G. Canonical dynamics: Equilibrium phase-space distributions [J]. Physical Review A, 1985, 31: 1695-1697.
DOI: 10.1103/physreva.31.1695
Google Scholar
[15]
NOSE S. A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods [J]. Journal of Chemical Physics, 1984, 81: 511-519.
Google Scholar
[16]
CHEN Jiuhua, WEIDNER Donald J., PARISE John B., et al. Observation of cation reordering during the olivine-spinel transition in fayalite by in situ synchrotron X-ray diffraction at high pressure and temperature [J]. Physical Review Letters, 2001, 86: 4072-4075.
DOI: 10.1103/physrevlett.86.4072
Google Scholar
[17]
PORTER D.A. and EASTERLING K.E., Phase transformations in metals and alloys. 1992: Chapman & Hall.
Google Scholar