The Preparation of Pure and Phosphrous-Doped La2Mo2O9 Oxide Ion Conductor by a Modified Precipitation Method

Article Preview

Abstract:

Lanthanum molybdate, La2Mo2O9, has been attracted considerable attention owing to its high concentration of intrinsic oxygen vacancies. In this paper, pure and phosphrous-doped La2Mo2O9 (LAMOX) is prepared by means of a modified precipitation method. The properties of the series of compounds have been characterized by thermal analysis (TGA-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and conductivity measured by a.c. impedance spectroscopy (IS). The electrical conductivity of pure La2Mo2O9 prepared by this method reaches a value of 0.15 S/cm at 800 °C, much higher than that of the sol-gel prepared material. P-doped La2Mo2O9 underwent a slightly structural phase transition, and the transition temperature is found to decrease with increasing P content. Electrical conductivity measurements show a slightly increase in the conductivity at low temperature after the tiny doping of P.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

963-968

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Lallgant, Nature 404 (2000) 856.

DOI: 10.1038/35009069

Google Scholar

[2] L. Malavasi, H. Kim, S. J. L. Billinge, T. Proffen, C. Tealdi, G. Flor, J. Am. Chem. Soc. 129 (2007) 6903.

Google Scholar

[3] F. Goutenoire, O. Isnard, E. Suard, O. Bohnke, Y. Laligant, R. Retoux, et al., J. Mater. Chem. 11 (2001) 119–124.

DOI: 10.1039/b002962i

Google Scholar

[4] X.P. Wang, Q.F. Fang, Solid State Ionics 146 (2002) 185–196.

Google Scholar

[5] Cristina Tealdi, Gaetano Chiodelli, Lorenzo Malavasi and Giorgio Flor, J. Mater. Chem. 14 (2004) 3553-3557.

Google Scholar

[6] F. Goutenoire, O. Isnard, E. Suard, O. Bohnke, Y. Laligant, R. Retoux, P. Lacorre, J. Mater. Chem. 11 (2001) 119–124.

DOI: 10.1039/b002962i

Google Scholar

[7] J.A. Collado, M.A.G. Aranda, A. Cabeza, P. Olivera-Pastor, S. Bruque, J. Solid State Chem. 167 (1) (2002) 80–85.

DOI: 10.1006/jssc.2002.9622

Google Scholar

[8] Z. S. Khadasheva, N. U. Venskovskii, M. G. Safronenko, A. V. Mosunov, E. D. Politova, and S. Yu. Stefanovich, Inorganic Materials, 38, (2002) 1168–1171.

DOI: 10.1023/a:1020978902757

Google Scholar

[9] A. Arulraj, F. Goutenoire, M. Tabellout, O. Bohnke, P. Lacorre, Chem. Mater. 14 (2002) 2492-2498.

Google Scholar

[10] D. Marrero-Lόpez, J. C. Ruiz-Morales, P. Núñez, J. C. C. Abrantes, J. R. Frade, J. Solid State Chem. 177 (2004) 2378-2386.

DOI: 10.1016/j.jssc.2004.03.020

Google Scholar

[11] D. Marrero-Lόpez, J. Canales-Vazquez, J.C. Ruiz-Morales, A. Rodriguez, J.T.S. Irvine, P. Nunez, Solid State Ionics 176 (2005) 1807.

Google Scholar

[12] D. Marrero-Lόpez, J. Pena-Martinez, D. Perez-Coll, P. Núñez, J. Alloy. Compd. 422 (2006) 249.

Google Scholar

[13] A. Subramania, T. Saradha, S. Muzhumathi, Journal of Alloys and Compounds (2007).

Google Scholar

[14] O. Joubert, A. Magrez, A. Chesnaud, M.T. Caldes, V. Jayaraman, Y. Piffard, L. Brohan, Solid State Sci. 4 (2002) 1413.

DOI: 10.1016/s1293-2558(02)00030-4

Google Scholar

[15] M. C. Martín-Sedeño, E. R. Losilla, L. León-Reina, S. Bruque, D. Marrero-López, P. Núñez, M.A.G. Aranda, Chem. Mater. 16 (2004) 4960.

DOI: 10.1021/cm0487472

Google Scholar

[16] A. Chesnaud, O. Joubert, M.T. Caldes, S. Gosh, Y. Piffard, L. Brohan, Chem. Mater. 16 (2004) 5372.

Google Scholar

[17] M.C. Martín-Sedeño, D. Marrero-López, E.R. Losilla, L. León- Reina, S. Bruque, P. Núñez, M.A.G. Aranda, Chem. Mater. 17 (2005) 5989.

DOI: 10.1021/cm051117v

Google Scholar

[18] H. Yammura, K. Matsui, K. Kakinuma, T. Mori, Solid State Ionics 123 (1999) 279.

Google Scholar

[19] T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116 (1994) 3081.

Google Scholar