The Effect of Current Density to Surface Morphology and Component of Micro-Arc Oxidization Ceramic Coating of Pure Titanium

Article Preview

Abstract:

The ceramic coating containing anatase TiO2 and rutile TiO2 is fabricated on the surface of pure titanium in the electrolyte of C4H6CaO4-NaH2PO4 by micro-arc oxidation (MAO) method. The effect of different current density to microscopic structure, elemental composition and phase components of Ceramic Coating are studied with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), 3D profilometer and etc. Results indicate that the ceramic coating on pure titanium by micro-arc oxidation is a porous mixed crystal structure which is mainly composed of such elements as Ti, O, Ca and P. With current density increasing, the average pore diameter and roughness on film surface first increase and then decrease, the porosity increases, the ratio of Ca/P then decreases, the relative content of anatase TiO2 increases and that of rutile TiO2 decreases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

992-999

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Geetha, A.K. Singh, R. Asokamani, et al: Prog. Mater. Sci. 54 (2009)397-425.

Google Scholar

[2] R. Banerjee, P.C. Collins, A. Genc, et al: Mater. Sci. Eng.A. 358(2003)343-349.

Google Scholar

[3] T. Fu, X.M. Wu, F. Wu, et al: Trans. Nonferrous Met. Soc. China. 7(2012) 1661-1666.

Google Scholar

[4] M.H. Prado, D. Silva, J.H.C. Lima, G.A. Soares, et al: Surf. Coat. Technol. 137(2001)270-276.

Google Scholar

[5] F.T. Cheng, P. Shi and H.C. Man: Scripta Mater. 51(2004)1041-1045.

Google Scholar

[6] Y. Vangolu, E. Arslan, Y. Totik, et al: Surf. Coat. Technol. 205(2010)1764-1773.

Google Scholar

[7] J.X. Li, Y.M. Zhang, Y. Han, et al: Surf. Coat. Technol. 204(2010)1252-1258.

Google Scholar

[8] S. Yu, Z.T. Yu, G. Wang, et al: Trans. Nonferrous Met. Soci. China. 21(2011)573-580.

Google Scholar

[9] C.M. Han, H.E. Kim, Y.S. Kim, et al: J. Biomed. Mater. Res. B: Appl. Biomater. 90 (2009)165-170.

Google Scholar

[10] S. Yu, Z.T. Yu, G. Wang, et al: Colloids Surf. B: Biointerf. 85(2011)103-115.

Google Scholar

[11] R.F. Zhu, Z.G. Wang, H.Y. Wang: J. Chin. Chem. Soc. 39(2011)1825-1829.

Google Scholar

[12] Y.J. Wang, L. Wang, H.D. Zheng, et al: Appl. Surf. Sci. 256(2010)2018-(2024).

Google Scholar

[13] L.H. Zhu, X.J. Xu, M. Liu: J. nonferrous met. 24(2014)1014-1019.

Google Scholar

[14] X.Q. Wang, Z.S. Jing: J. Js. Ployte. Universi. 17(2005)20-25.

Google Scholar

[15] Z.K. He, P.S. Tang: Surf. Technol. 32(2003)100-114.

Google Scholar

[16] Y.B. Zhai, H.B. Chen, X.T. Ma: J. Southwest. Universi. 35(2013)166-172.

Google Scholar

[17] Q. Li, J.Y. Yu, P. Shi, et al: Rare Met. Meter. Eng. 42(2013)1158-1164.

Google Scholar

[18] P.A. Spurr, H. Myers: Anal. Chem. 29(1957)760-762.

Google Scholar