The Effect of Oxidized Time to Structure and Composition of Micro-Arc Oxidization Ceramic Coating of Pure Titanium

Article Preview

Abstract:

The porous oxide TiO2 ceramic coating containing Ca and P is fabricated on the surface of pure titanium in the electrolyte of C4H6CaO4-NaH2PO4 by micro-arc oxidation (MAO) method. Scanning electron microscopy (SEM) and 3D profilometer are used to observe difference between morphology of coating surface under condition of different oxidized time. Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) are used to discuss the effect of oxidized time to the ratio of Ca/P and phase composition of ceramic coating. Results indicate that the oxidized time has a little effect on structure and composition of MAO ceramic coating of pure titanium. After modified with MAO, pure titanium is rough and porous on its surface, its average aperture, porosity and roughness enlarge as oxidized time extends. The increase of oxidized time makes the ratio of Ca/P and the relative content of rutile TiO2 increases, but the relative content of anatase TiO2 shows opposite trend.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

984-991

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Geetha, A.K. Singh, R. Asokamani and et al: Prog. Mater. Sci. 54 (2009)397-425.

Google Scholar

[2] C.N. Elias, J.H.C. Lima, R. Valiev and et al: JOM. 60(2008) 46.

Google Scholar

[3] K.P. Zhu, J.W. Zhu and H.L. Qu: Rare Metal Mater. Eng. 41(2012)(2058).

Google Scholar

[4] D. Zaffer, C. Bertoldi and U. Consolo: Biomaterials 24(2003)1093-1099.

Google Scholar

[5] R. Banerjee, P.C. Collins, A. Genc and et al: Mater. Sci. Eng.A. 358 (2003) 343.

Google Scholar

[6] T. Fu, X.M. Wu, F. Wu and et al: Trans. Nonferrous Meter. Soc. China. 7 (2012) 1661.

Google Scholar

[7] V. Cannillo, A.J. Colmenares, L. Lusvarghi and et al: Eur. Ceram. Soci. 29(2009)1665-1677.

Google Scholar

[8] T.M. Lee, C.Y. Yang, E. Chang and et al: Biomed. Mater. Res.A. 71A(2004) 652.

Google Scholar

[9] L. Wang, F.Y. Yan and et al: Chin.J. Tissue Eng. Res. 12(2012) 220.

Google Scholar

[10] Y. Vangolu, E. Arslan, Y. Totik and et al: Surf. Coat. Technol. 205(2010)1764-1773.

Google Scholar

[11] J.X. Li, Y.M. Zhang, Y. Han and et al: Surf. Coat. Technol. 204(2010)1252-1258.

Google Scholar

[12] S. Yu, Z.T. Yu, G. Wang and et al: Trans. Nonferrous Met. Soc. China. 21(2011)573-580.

Google Scholar

[13] R.F. Zhu, Z.G. Wang and et al: J. Chinese Ceram. Soci. 11(2011) 119.

Google Scholar

[14] B.G. Guo, J. Liang and et al: Chinese J. Nonferrous Metals. 6(2005)98-104.

Google Scholar

[15] Y. Li, I.S. Lee, F.Z. Cui and et al: Biomaterials 29(2008)2025-(2032).

Google Scholar

[16] C. Larsson, P. Thomsen, B.O. Aronsson and et al: Biomaterials 17(1996)605-616.

Google Scholar

[17] Y.J. Wang, L. Wang, H.D. Zheng and et al: Appl. Surf. Sci. 256(2010)2018-(2024).

Google Scholar

[18] P.A. Spurr and H. Myers: Anal. Chem. 29(1957)760-762.

Google Scholar

[19] T.P. Kunzler, T. Drobek, M. Schuler and et al: Biomaterials 28(2007) 2175-2182.

Google Scholar

[20] D.D. Deligianni, N. Katsala, S. Ladas and et al: Biomaterials 22(2001) 1241-1251.

Google Scholar

[21] J. Brinkmann, T. Hefti, F. Schlottig and et al: Biointerphases. 7(2012) 34.

Google Scholar