Characterization of Silicon Carbide Nanowhiskers Synthesized by Microwave Heating Using Photoluminescence Spectroscopy and Fourier Transform Infrared Spectroscopy

Article Preview

Abstract:

Silicon carbide is an attractive material for engineering and industrial applications in harsh conditions. In manufacturing process, conventional heating process is commonly used to synthesis the silicon carbide. In this study, SiC nanowhiskers were synthesized from microwave heating of mixture of graphite and silica in the ratio of 3: 1. The mixture was heated by using laboratory microwaves oven to 1400°C at heating rate of 20 °C/min and temperature was hold for 30 minutes. Photoluminescence spectroscopy and Fourier transform infrared spectroscopy were used to characterize the SiC nanowhiskers. Photoluminescence spectrum of SiC nanowhiskers showed a sharp peak at 420 nm corresponding to band gap of SiC (2.39 ev). FTIR absorption spectra of SiCNWs recorded a band at 805.22 cm-1 corresponding to Si-C bond.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

116-120

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.E. Ryan, I. Berman, R.C. Marshall, D.P. Considine, J.J. Hawley and J. Cryst: J. Cryst. Growth, Vol. 1 (1967), p.255–262.

Google Scholar

[2] B. Elyassi, T.W. Kim, M. Sahimi and T.T. Tsotsis: Mater. Chem. Phys., Vo1. 18 (2009), p.259–263.

Google Scholar

[3] H.J. Choi, J.G. Lee and J i: Mater. Sci. vol. 30 (1995), p.1982–(1986).

Google Scholar

[4] W.S. Seo, K. Koumoto, S. Aria and J. Am: Ceram. Soc, vol. 83 (2000), p.2584–2592.

Google Scholar

[5] C.H. Liang, G.W. Meng, L.D. Zhang, Y.C. Wu and Z. Cui: Chem. Phys. Lett. Vol. 329 (2000), p.323–328.

Google Scholar

[6] D. Zhou and S. Seraphin: Chem. Phys. Lett. Vol. 222 (1994), p.233–238.

Google Scholar

[7] R.V. Krishnarao, J. Subrahmanyam and S. Subbarao: Bull. Mater. Sci. Vol. 24 (2001), p.273–279.

Google Scholar

[8] Yang Y, Yang K, Lin ZM and Li JT: Mater Lett, Vol. 61 (2007), p.671.

Google Scholar

[9] Sutton WH: Ceram Bull, vol. 68(2) (1989), p.376–86.

Google Scholar

[10] K. J. Rao, B. Vaidhyanathan, M. Ganguli, and P. A. Ramakrishnan: Chem. Mater (1999), pp.882-895.

Google Scholar

[11] Wu R.B., Wu L.L., Yang G.Y. and ET AL: J. Phys. D, Appl. Phys. Vol. 40 (2007), p.3697–3701.

Google Scholar

[12] J. Zhu, Y. D Wu, H. T Chen, X. Xiong and X. B Chen: Micro & Nano Letters, Vol. 7, Iss. 9 (2012), p.974–977.

Google Scholar

[13] Wu R.B., Pan Y., Yang G.Y. and ET AL: J. Phys. Chem. C, Vol. 111 (2007), p.6233–6237.

Google Scholar

[14] Seong H.K., Choi H.J., Lee S.K., Lee J. and Choi D. J: Appl. Phys. Lett. Vol. 85 (2005), p.1256–1258.

Google Scholar

[15] Derradji, M., Ramdani, N., Zhang, T., Wang, J., Feng, T-T, Wang, H. and Liu, W-B: Materials and Design, Vol. 71 (2015), pp.48-55.

Google Scholar

[16] John, C.: Encyclopedia of Analytical Chemistry (2000), p.10815—10837.

Google Scholar

[17] Ji, Z., Han, W., Li, Y., Jiang, Y., Li, H. and Zhao T.: Mater. Lett. Vol. 65 (2011) , p.185–187.

Google Scholar

[18] L.G. Ceballos-Mendivil, R.E. Cabanillas-Lo´pez, J.C. Tanori-Cordova, R. Murrieta-Yescas, C.A. Perez-Rabago, H.I. Villafan-Vidales, C.A. Arancibia-Bulnes and C.A. Estrada: Solar Energy Vol. 116 (2015), p.238–246.

DOI: 10.1016/j.solener.2015.04.006

Google Scholar

[19] Rajarao, R., Ferreira, R., Fahandej Sadi, S.H., Khanna and R., Sahajwalla: Mater. Lett. Vol. 120 (2014), p.65–68.

Google Scholar

[20] Ye, J., Zhang, S. and Lee, W. E: Micropor. Mesopor. Mater. Vol. 152 (2012), p.25–30.

Google Scholar