Effect of Al Excess on the Band Structure of ZnO Using Density Functional Theory

Article Preview

Abstract:

The effect of Al doping to the band structure of ZnO was studied in this paper. The electronic band structure of Al doped ZnO was determined by using first-principles based on density functional theory. ABINIT was used to perform the band structure calculation. The calculated band structure of ZnO and Al doped ZnO shows that ZnO is a direct band gap semiconductor. The band structure become narrow with Al doping compared pure ZnO. With Al doping, the band gap of ZnO (0.749 eV) become smaller as the concentration Al doping increased to 4wt% (0.551 eV). The electrical conductivity of Al doped ZnO was studied as a references value for the band gap. The electrical conductivity of ZnO (8.21 S/cm) was enhanced with Al doping increased to 4wt% (71.87 S/cm).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-110

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Janotti, A. and Van de Walle, C. G: Reports on Progress in Physics, 72(12): 126501-126529. (2009).

Google Scholar

[2] B.K. Sharma, N. Khare: J. Phys. D: Appl. Phys 43(2010) p.465402.

Google Scholar

[3] H. Aourag, B. Khelifa, L. Hamerlaine, H. Belarbi, and A. Belaidi: Physics Letters A, 145(8-9): 455-460. (1990).

DOI: 10.1016/0375-9601(90)90314-e

Google Scholar

[4] K.J. Chen, T.H. Fang, F.Y. Hung, L.W. Ji, S.J. Chang, S.J. Young, and Y.J. Hsiao: Applied Surface Science, 254(18): 5791-5795. (2008).

DOI: 10.1016/j.apsusc.2008.03.080

Google Scholar

[5] D.C. Look : Materials Science and Engineering: B, 80(1-3): 383-387. (2001).

Google Scholar

[6] J.W. Fergus: Journal of the European Ceramic Society, 32(3): 525-540. (2012).

Google Scholar

[7] K.F. Cai, E. Muller, C. Drasar, and A. Mrotzek: Materials Science and Engineering: B, 104(1-2): 45-48. (2003).

Google Scholar

[8] M. Chen, Z.L. Pei, C. Sun, L.S. Wen, and X. Wang: Journal of Crystal Growth, 220(3): 254-262. (2000).

Google Scholar

[9] Y.Y. Chen, J.C. Hsu, P.W. Wang, Y.W. Pai, C.Y. Wu, and Y.H. Lin: Applied Surface Science, 257: 3446-3450. (2011).

Google Scholar

[10] R.G. Parr and W. Yang: Density functional theory of atoms and molecules New York: Oxford University Press. ISBN 0-19-509276-7, (1989).

Google Scholar

[1] R.M. Martin: Electronic structure: Basic theory and practical methods. Cambridge University Press ISBN 0-521-78285-6, (2006).

Google Scholar

[2] J. Kohanoff: Electronic structure calculations for solids and molecules: theory and computational methods. Cambrigge University Press ISBN-10 0-521-81591-8, (2006).

Google Scholar

[3] X. Gonze, B. Amadon, P.M. Anglade, J.M. Beuken, F. Bottin, P. Boulanger: Computer Physical Communication , 180: 2583-2615. (2009).

Google Scholar

[4] M. Zhang, C. H. Zhang, J. Shen: Chin. PHys. B 20 (2011) 017101.

Google Scholar

[5] P. Yang, Y. Zhao, H. Yang: Ceramics International 41 (2015) 2446-2452.

Google Scholar

[6] J. Han, P.Q. Mantas and A.M.R. Senos: Journal of the European Ceramic Society, 21(10-11): 1883-1886. (2001).

Google Scholar

[7] P. Li, S.H. Deng, Y.B. Li, J. Huang, G.H. Liu, L. Zhang: Physica B 406(2011)3125–3129.

Google Scholar

[18] Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga and K. Morita: Journal of the European Ceramic Society, 24(1): 139-146. (2004).

DOI: 10.1016/s0955-2219(03)00336-4

Google Scholar

[19] X. Qu, W. Wang, S. Lv and D. Jia: Solid State Communications, 151(4): 332-336. (2011).

Google Scholar