Effect of Loading Amount of Glucose Precursor on Mesoporous Carbon Surface Area for Supercapacitor Electrode Application

Article Preview

Abstract:

Effect of glucose loading on the synthesis mesoporous carbon had been studied using hard template method where mesoporous silica SBA-15 was used as a template. To obtain a large pore of mesoporous carbon sample, a large pore of silica template was used. A series of mesoporous carbon sample was synthesized by loading different amounts of glucose (2.5g, 5.0g and 10.0g) as a carbon precursor to ensure that the template was fully impregnated with precursor. After treatment process, the surface area of carbon samples were measured with Brunauer-Emmett-Teller (BET) analysis and it shows that higher amount of glucose gives higher surface area due to the large pore of the template used. The samples then were tested with cyclic voltammetry technique at different scan rates (10, 20, 30 and 50 mVs-1) in 6M KOH electrolyte. It reveals that higher surface area samples show a higher specific capacitance with 119 F/g at slow scan rate 10 mVs-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-105

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J-S. Yu, S. B. Yoon and G. S. Chai: Carbon Vol. 39 (2001), p.1421.

Google Scholar

[2] E. Redondo, J. Carretero-Gonzalez, E. Goikolea, J. Segalini and R. Mysyk: Electrochemica Acta. Vol. 160 (2015), p.178.

Google Scholar

[3] S. Sedghi, S.H. Madani, C. Hu, A. Silvestre-Albero, W. Skinner, P. Kwong, P. Pendleton, R.J. Smernik, F. Rodriguez-Reinoso and M.J. Biggs: Carbon Vol. 95 (2015), p.144.

DOI: 10.1016/j.carbon.2015.08.019

Google Scholar

[4] Z. Liu. D. Fu, F. Liu, G. Han, C. Liu, Y. Chang, Y. Xiao, M. Li and S. Li: Carbon Vol. 70 (2014), p.295.

Google Scholar

[5] R. Ryoo, S.H. Joo and S. Jun: J. Phys Chem B. Vol. 103(37) (1999), p.7743.

Google Scholar

[6] S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki: J. Am. Chem Soc. Vol. 122 (2000), p.10712.

DOI: 10.1021/ja002261e

Google Scholar

[7] W. Shen, X. Yang, Q. Guo, Y. Liu, Y. Song, Z. Han, Q. Sun and J. Cheng: Materials Letters Vol. 60 (2006), p.3517.

Google Scholar

[8] K.T. Lee, X. Ji, M. Rault and L. F. Nazar: Angewandte Chemie Vol. 48(31) (2009), p.5661.

Google Scholar

[9] M. Ulfa, W. Trisunaryanti, I. I. Falah, I. Kartini and Sutarno: IOSR Journal of applied chemistry Vol. 7(5) (2014), p.01.

Google Scholar

[10] B. Mazinani, A. Beitollahi, A.K. Masrom, S. Ibrahim, F. Jamil: AIP Conf Proc. Vol. 1502 (2012), p.272.

Google Scholar

[11] F. Lufrano, P. Staiti: Int. J. Electrochem. Sci. Vol. 5 (2010), p.903.

Google Scholar

[12] R. Guo, R Lin, W. Yue and H. Ma: Electrochimica Acta Vol. 174 (2015), p.1050.

Google Scholar

[13] J. Li, Y. Liang, B. Dou, C. Ma, R. Lu, Z. Hao, Q. Xie, Z. Luan and K. Li: Materials Chemistry and Physics Vol. 138 (2013), p.484.

Google Scholar

[14] P. Simon and A. Burke: The electrochemical society interface (2008), p.38.

Google Scholar

[15] E. Frackowiak and F. Beguin: Carbon Vol. 39(6) (2001), pg. 937.

Google Scholar

[16] J. Chen, N. Xia, T. Zhou, S. Tan, F. Jiang and D. Yuan: Int. J. Electrochem. Sci. Vol 4 (2009), p.1063.

Google Scholar

[17] V. Subramaniam, H. Zhu, R. Vajtai, P.M. Ajavan, B. Wei. J. Phys. Chem. B. (2005) 109, 20207-20214.

Google Scholar