Ultrasonic Vibration in Leadframe for the Bondability for Au Wedge Bond

Article Preview

Abstract:

The in-situ inspection of ultrasonic vibration of wire bonder capillary was carried out using laser interferometer in order to analyze the formation of Au wedge bond. It was observed that the changes in ultrasonic vibration can be used to describe process of bonding formation. The loss of ultrasonic energy was exhibited in ultrasonic vibration waveform of wire bonding on leadframe A. This observation is due to the low frictional energy and high deformation of Au wedge bond on leadframe A. The lower pull strength obtained by Au wedge bond further confirms the reduction of bond formation on leadframe A.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-86

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Tummala, R.R., 2001. Fundamentals of Microsystems Packaging, McGraw-Hill, New York, pp.311-312.

Google Scholar

[2] Zulkifli, M.N., Abdullah, S., Othman, N.K., Jalar, A., 2012. Some thoughts on bondability and strength of gold wire bonding. Gold Bull. 45, 115-125.

DOI: 10.1007/s13404-012-0060-y

Google Scholar

[3] Zhong, Z.W., 2009. Fine and ultra-fine pitch wire bonding: challenges and solutions. Microelectron. Int. 26, 10-18.

DOI: 10.1108/13565360910960187

Google Scholar

[4] Qi, J., Hung, N.C., Li, M., Liu, D., 2006. Effects of process parameters on bondability in ultrasonic ball bonding. Scripta Mater. 52, 293-297.

DOI: 10.1016/j.scriptamat.2005.07.042

Google Scholar

[5] Lum, I., Jung, J.P., Zhou, Y., 2005. Bonding Mechanism in Ultrasonic Gold Ball Bonds on Copper Substrate. Metall. Mater. Trans. A. 36A, 1279-1286.

DOI: 10.1007/s11661-005-0220-2

Google Scholar

[6] Saiki, H., Marumo, Y., Nishitake, H., Uemura, T., Yotsumoto, T., 2006. Deformation analysis of Au wire bonding. J. Mater. Process. Tech. 177, 709-712.

DOI: 10.1016/j.jmatprotec.2006.04.024

Google Scholar

[7] An, B., Ding, L., Wang, T., Lu, T., Sun, L., Wu, Y., 2011. Improvement of the second bond strength in copper wire bonding on pre-plated leadframe, IEEE 12th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), Shanghai, p.1.

DOI: 10.1109/icept.2011.6066860

Google Scholar

[8] Shah, A., Mayer, M., Zhou, Y., Hong, S.J., Moon, J.T., 2008. In situ ultrasonic force signal during low-temperature thermosonic copper wire bonding. Micron. Eng. 85, 851-1857.

DOI: 10.1016/j.mee.2008.05.035

Google Scholar

[9] Qin, I., Shah, A., Huynh, C., DeAngelis, D., Meyer, M., Mayer, M., Zhou, Y., 2010. Thermosonic Au Ball Bonding Process Investigated using Microsensor and Laser Vibrometer, IEEE 2010 Proceeding 60th Eelectronic Components and Technology Conference (ECTC), Las Vegas, pp.1776-1782.

DOI: 10.1109/ectc.2010.5490729

Google Scholar

[10] Zhong, Z.W., Goh, K.S., 2006. Investigation of ultrasonic vibrations of wire-bonding capillaries. Microelectr. J. 37, 107-113.

DOI: 10.1016/j.mejo.2005.04.045

Google Scholar

[11] Li, J., Han, L., Duan, J., Zhong, J., 2007. Microstructural characteristics of Au/Al bonded interfaces. Mater. Charact. 58, 103-107.

DOI: 10.1016/j.matchar.2006.03.018

Google Scholar

[12] Hibbeler, R.C., 1997. Engineering Mechanics: Dynamics, Prentice Hall, New Jersey, pp.150-151.

Google Scholar