[1]
Djwantoro Hardjito and others, On the Development of Fly Ash-Based Geopolymer Concrete, ACI Materials Journal, 101. 6 (2004), 467–72.
Google Scholar
[2]
Yahya Zarina and others, Review on the Various Ash from Palm Oil Waste as Geopolymer Material, Reviews on Advanced Materials Science, 34. 1 (2013), 37–43.
Google Scholar
[3]
Fernández-Jiménez A., Palomo A., Alonso M.M. "Alkaline activation, procedure for transforming fly ash into new materials. Cem. Concr. Res. 37, (2005) 251-257.
Google Scholar
[4]
Phoo-ngernkham T, Chindaprasirt P, Sata V, Pangdaeng S, Sinsiri T. Properties of high calcium fly ash geopolymer pastes containing Portland cement as additive. Int J Miner Metall Mater 2013; 20(2): 214–20.
DOI: 10.1007/s12613-013-0715-6
Google Scholar
[5]
Bagheri A, Nazari A. Compressive strength of high strength class C fly ashbased geopolymers with reactive granulated blast furnace slag aggregates designed by Taguchi method. Mater Des 2014; 54: 483–90.
DOI: 10.1016/j.matdes.2013.07.035
Google Scholar
[6]
Barbosa, V.F.F., MacKenzie, K.J.D. and Thaumaturgo, C. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers, Int. J. Inorg. Mater, 2, (2000) 309–17.
DOI: 10.1016/s1466-6049(00)00041-6
Google Scholar
[7]
M. T. Muhammad Faheem, A. M. Mustafa Al Bakri, H. Kamarudin, C. M. Ruzaidi, M. Binhussain, and A. M. Izzat in: The Relationship of Na2SiO3/NaOH Ratio, Kaolin/Alkaline Activator Ratio and Sand/Kaolin Ratio to the Strength of Kaolin - Based Geopolymer Brick. Int. Review of Mech. Eng; Vol. 7, N1. ISSN 1970-8734 (2013).
DOI: 10.4028/www.scientific.net/kem.594-595.406
Google Scholar
[8]
Y.M. Liew, H. Kamarudin, A.M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi and C.Y. Heah / J. Constr. Build. Mater. 30 (2012) 795.
DOI: 10.1016/j.conbuildmat.2011.12.079
Google Scholar
[9]
T.W. Cheng and J.P. Chiu / Minerals Eng. 16 (2003) 206.
Google Scholar
[10]
Li C, Sun H, Li L. A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cem Concr Res 2010; 40(9): 1341–9.
DOI: 10.1016/j.cemconres.2010.03.020
Google Scholar
[11]
Kumar S, Kumar R, Mehrotra SP. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J Mater Sci 2010; 45(3): 607–15.
DOI: 10.1007/s10853-009-3934-5
Google Scholar
[12]
J. Temuujin, a. Van Riessen and K. J D MacKenzie, Preparation and Characterisation of Fly Ash Based Geopolymer Mortars, Construction and Building Materials, 24. 10 (2010), 1906–10.
DOI: 10.1016/j.conbuildmat.2010.04.012
Google Scholar
[13]
M. M. a. Abdullah and others, The Relationship of NaOH Molarity, Na2SiO3/NaOH Ratio, Fly Ash/Alkaline Activator Ratio, and Curing Temperature to the Strength of Fly Ash-Based Geopolymer, Advanced Materials Research, 328-330 (2011), 1475–82.
DOI: 10.4028/www.scientific.net/amr.328-330.1475
Google Scholar
[14]
F. Pacheco-Torgal, Z. Abdollahnejad, S. Miraldo, S. Baklouti, Y. Ding. An overview on the potential of geopolymers for concrete infrastructure rehabilitation. Construction and Building Materials 36 (2012) 1053–1058.
DOI: 10.1016/j.conbuildmat.2012.07.003
Google Scholar
[15]
Shash AA. Repair of concrete beams a case study. Const Build Mater 2005; 19(1): 75-9.
Google Scholar
[16]
Seminar on Practical Approaches towards Assessment, Repair and Strengthening of Crack Damaged Concrete Structures 2015, Japan Concrete Institute: Practical Guideline for Investigation, Repair, and Strengthening of Cracked Concrete Structures.
DOI: 10.17265/1934-7359/2015.02.010
Google Scholar
[17]
Emberson, N. K. and Mays, G. C. Significance of property mismatch in the patch repair of structural concrete, part I: properties of repair systems. Mag. Concr. Res. 1990, 42, (152), 147-160.
DOI: 10.1680/macr.1990.42.152.147
Google Scholar
[18]
Mirza, J., Mirza, M.S. and Lapointe, R. 2002. Laboratory and field perform.
Google Scholar
[19]
S.R. Karade, R. Lakhani and K.K. Asthana. Evaluation Of Repair Materials: Issues And Methods. New Construction And Building Materials World. Feb. 2006, 11(8): 152-168.
Google Scholar
[20]
Mays, G. and Wilkinson, W. Polymer repairs to concrete: their influence on structural performance. ACI SP-JOO, (1987) : 351-375.
Google Scholar
[21]
Pacheco-Torgal, F., Abdollahnejad, Z., Miraldo, S., Baklouti, S. & Ding, Y. An overview on the potential of geopolymers for concrete infrastructure rehabilitation. Construction and Building Materials 36, 1053–1058 (2012).
DOI: 10.1016/j.conbuildmat.2012.07.003
Google Scholar
[22]
Fatih Celik and Hanifi Canakci. An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA). Construction and Building Materials 91 (2015) 187-194.
DOI: 10.1016/j.conbuildmat.2015.05.025
Google Scholar
[23]
Seminar on Practical Approaches towards Assessment, Repair and Strengthening of Crack Damaged Concrete Structures 2015, Japan Concrete Institute: Practical Guideline for Investigation, Repair, and Strengthening of Cracked Concrete Structures.
DOI: 10.17265/1934-7359/2015.02.010
Google Scholar
[24]
Md Shamsuddoha, Md Mainul Islam, Thiru Aravinthan, Allan Manalo , Kin-tak Lau. Characterisation of mechanical and thermal properties of epoxy grouts for composite repair of steel pipelines. Materials and Design 52 (2013) 315-327.
DOI: 10.1016/j.matdes.2013.05.068
Google Scholar
[25]
D. R. Morgan. Compatibility of concrete repair materials and systems. Construction and Building Materials, (1996): 10: 57-67.
DOI: 10.1016/0950-0618(95)00060-7
Google Scholar
[26]
Seon-Ju Kim and Kyung-Sub Cha. Characteristics of Geo-Polymer Grout Using Quantitative and Qualitative Analysis. Proceedings of the Twenty-third (2013) International Offshore and Polar Engineering. Anchorage, Alaska, USA, June 30–July 5, (2013).
Google Scholar
[27]
Zarina, Y., Mustafa Al Bakri, a. M., Kamarudin, H., Nizar, I. K. & Rafiza, a. R. Review on the various ash from palm oil waste as geopolymer material. Reviews on Advanced Materials Science 34, 37–43 (2013).
DOI: 10.4028/www.scientific.net/kem.594-595.8
Google Scholar
[28]
P. Chindaprasirt, T. Chareerat, S. Hatanaka, T. Cao, High strength geopolymer using fine high calcium fly ash, J. Mater. Civ. Eng. 23 (3) (2011) 264–270.
DOI: 10.1061/(asce)mt.1943-5533.0000161
Google Scholar
[29]
B. V. Rangan, in: Low-Calcium, Fly-Ash-Based Geopolymer Concrete, Concrete Construction Engineering Handbook, Taylor and Francis Group, LLC (2008), pp.1-19.
DOI: 10.1201/9781420007657.ch26
Google Scholar
[30]
Hardjito, D., Wallah, S. E., Sumajouw, D. M. J. & Rangan, B. V. On the development of fly ash-based geopolymer concrete. ACI Materials Journal 101, 467–472 (2004).
DOI: 10.1007/s10853-006-0523-8
Google Scholar
[31]
J. Temuujin and a. van Riessen, Effect of Fly Ash Preliminary Calcination on the Properties of Geopolymer, Journal of Hazardous Materials, 164 (2009), 634–39.
DOI: 10.1016/j.jhazmat.2008.08.065
Google Scholar
[32]
Rattanasak, Ubolluk, and Prinya Chindaprasirt, Influence of NaOH Solution on the Synthesis of Fly Ash Geopolymer, Minerals Engineering, 22 (2009), 1073–78.
DOI: 10.1016/j.mineng.2009.03.022
Google Scholar
[33]
Temuujin, J., a. Van Riessen, and K. J D MacKenzie, Preparation and Characterisation of Fly Ash Based Geopolymer Mortars, Construction and Building Materials, 24 (2010), 1906–10.
DOI: 10.1016/j.conbuildmat.2010.04.012
Google Scholar
[34]
A.M. Neville, Properties of Concrete, Longman Publishers, Essex, (1997).
Google Scholar
[35]
W.K. W Lee and J.S. J van Deventer, The Interface between Natural Siliceous Aggregates and Geopolymers, Cement and Concrete Research, 34. 2 (2004), 195–206.
DOI: 10.1016/s0008-8846(03)00250-3
Google Scholar
[36]
Gorst N and Clark L (2003). Effects of thaumasite on bond strength of reinforcement in concrete. Cement and Concrete Materials, Vol. 25, No. 8, pp.1089-1094.
DOI: 10.1016/s0958-9465(03)00133-1
Google Scholar
[37]
Mu B, Meyer C, and Shimanovich S (2002). Improving the interface bond between fiber mesh and cementitious matrix. Cement and Concrete Research, Vol. 32, No. 5, pp.783-787.
DOI: 10.1016/s0008-8846(02)00715-9
Google Scholar
[38]
B. a. Tayeh, B. H. Abu Bakar, M. a. Megat Johari, and Y. L. Voo, Evaluation of bond strength between normal concrete substrate and ultra high performance fiber concrete as a repair material, Procedia Engineering, vol. 54, no. Farhat 2010, p.554–563, (2013).
DOI: 10.1016/j.proeng.2013.03.050
Google Scholar
[39]
Springkel MM, and Ozyildirim C (2000). Evaluation of high performance concrete overlays placed on Route 60 over Lynnhaven Inlet in Virginia.
Google Scholar