Effect of NaOH Concentration on Flexural Strength, Phase Formation and Microstructural Development of Kaolin Geopolymer Ceramic

Article Preview

Abstract:

This paper reports a detail study of the effect of NaOH concentration on flexural strength, phase formation and microstructural development of kaolin geopolymer ceramic. The NaOH concentration used ranged from 6 M to 14 M. The flexural strength showed the optimum value when NaOH concentration is 12 M. XRD analysis showed the formation of crystalline nepheline in all samples. Microstructural analysis showed formation of homogenous and denser structure in kaolin geopolymer ceramic as the NaOH concentration increase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

405-411

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Duxson, P., G.C. Lukey, and J.S.J. v. Deventer, Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. J Mater Sci, 2007. 42: pp.3044-3054.

DOI: 10.1007/s10853-006-0535-4

Google Scholar

[2] Xu, H. and J.S.J.V. Deventer, Microstructural characterisation of geopolymers synthesised from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM. Cement and Concrete Research, 2002. 32: pp.1705-1716.

DOI: 10.1016/s0008-8846(02)00859-1

Google Scholar

[3] Sagoe-Crentsil, K. and L. Weng, Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems. Advances in Geopolymer Science and Technology, 2007. 42: pp.3007-3014.

DOI: 10.1007/s10853-006-0818-9

Google Scholar

[4] Bell, A.T., NMR applied to zeolite synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999. 158: pp.221-234.

DOI: 10.1016/s0927-7757(99)00149-1

Google Scholar

[5] Bondar, D., et al., Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans. Cement & Concrete Composites, 2011. 33: pp.251-260.

DOI: 10.1016/j.cemconcomp.2010.10.021

Google Scholar

[6] Provis, J.L., et al., Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009. 336: pp.57-63.

DOI: 10.1016/j.colsurfa.2008.11.019

Google Scholar

[7] Rattanasak, U. and P. Chindaprasirt, Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 2009. 22: pp.1073-1078.

DOI: 10.1016/j.mineng.2009.03.022

Google Scholar

[8] Swanepoel, J.C. and C.A. Strydom, Utilisation of fly ash in a geopolymeric material. Applied Geochemistry, 2002. 17: pp.1143-1148.

DOI: 10.1016/s0883-2927(02)00005-7

Google Scholar

[9] Bell, J.L., P.E. Driemeyer, and W.M. Kriven, Formation of Ceramics from Metakaolin-Based Geopolymers. Part II: K-Based Geopolymer. J. Am. Ceram. Soc, 2009. 92: pp.607-615.

DOI: 10.1111/j.1551-2916.2008.02922.x

Google Scholar

[10] Bell, J.L., P.E. Driemeyer, and W.M. Kriven, Formation of Ceramics from Metakaolin-Based Geopolymers: Part I—Cs-Based Geopolymer. J. Am. Ceram. Soc, 2009. 92: pp.1-8.

DOI: 10.1111/j.1551-2916.2008.02790.x

Google Scholar

[11] Wang, H., H. Li, and F. Yan, Synthesis and mechanical properties of metakaolinite-based geopolymer. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005. 268: pp.1-6.

DOI: 10.1016/j.colsurfa.2005.01.016

Google Scholar

[12] Xu, H. and J.S.J. v. Deventer, The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003. 216: pp.27-44.

DOI: 10.1016/s0927-7757(02)00499-5

Google Scholar

[13] Lee, V. -G. and T. -H. Yeh, Sintering effects on the development of mechanical properties of fired clay ceramics. Materials Science and Engineering A, 2008. 485: pp.5-13.

DOI: 10.1016/j.msea.2007.07.068

Google Scholar

[14] Hanjitsuwan, S., et al., Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cement & Concrete Composites, 2014. 45: pp.9-14.

DOI: 10.1016/j.cemconcomp.2013.09.012

Google Scholar

[15] Jaya, N.A., et al., Correlation between Na2SiO3/ NaOH and NaOH Molarity to Flexural Strength of Geopolymer Ceramic. Applied Mechanics and Materials, 2015. 754-755: pp.152-156.

DOI: 10.4028/www.scientific.net/amm.754-755.152

Google Scholar

[16] Guo, X., H. Shi, and W.A. Dick, Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement & Concrete Composites, 2010. 32: pp.142-147.

DOI: 10.1016/j.cemconcomp.2009.11.003

Google Scholar

[17] Kamarudin, H., et al., Preliminary Study on Effect of NaOH Concentration on Early Age Compressive Strength of Kaolin-Based Green Cement. International Conference on Chemistry and Chemical Process, 2011. 10.

Google Scholar

[18] lvarez-Ayuso, E.A., et al., Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. Journal of Hazardous Materials, 2008. 154: pp.175-183.

DOI: 10.1016/j.jhazmat.2007.10.008

Google Scholar

[19] Murray, H.H., Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 2000. 17: pp.207-221.

DOI: 10.1016/s0169-1317(00)00016-8

Google Scholar