[1]
W. C. Association, Coal & Electricity, (2015).
Google Scholar
[2]
I. E. Agency, Case Studies in Sustainable Development in theCoal Industry, France, (2006).
Google Scholar
[3]
A. Hutagi, R. B. Khadiranaikar, and R. Shemblle, A Study on Fiber Reinforced Geopolymer Concrete, Journal of Civil Engineering Technology and Research, vol. 2, pp.15-22, (2014).
Google Scholar
[4]
P. Duxson and J. L. Provis, Low CO2 concrete: Are we making any progress?, BEDP environment design guide Royal Australian Institute of Architects (2008).
Google Scholar
[5]
F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products, Construction and Building Materials, vol. 22, pp.1305-1314, (2008).
DOI: 10.1016/j.conbuildmat.2007.10.015
Google Scholar
[6]
E. Benhelal, G. Zahedi, E. Shamsaei, and A. Bahadori, Global strategies and potentials to curb CO2 emissions in cement industry, Journal of Cleaner Production, vol. 51, pp.142-161, (2013).
DOI: 10.1016/j.jclepro.2012.10.049
Google Scholar
[7]
Rangan B. V, Low calcium flyash based geopolymer concrete. New York: CRC Press; , (2007).
Google Scholar
[8]
Shaikh and F. U. Ahmed, Review of mechanical properties of short fibre reinforced geopolymer composites, Construction and Building Materials, vol. 43, pp.37-49, (2013).
DOI: 10.1016/j.conbuildmat.2013.01.026
Google Scholar
[9]
A. Natali, S. Manzia, and M. C. Bignozzia, Novel fiber-reinforced composite materials based on sustainable geopolymer matrix, Procedia Engineering vol. 21, pp.1124-1131, (2011).
DOI: 10.1016/j.proeng.2011.11.2120
Google Scholar
[10]
M. Salmana, Ö. Cizer, Y. Pontikes, R. Snellings, L. Vandewalle, B. Blanpain, and K. V. Balen, Cementitious binders from activated stainless steel refining slag andthe effect of alkali solutions, Journal of Hazardous Materials, vol. 286 p.211–219, (2015).
DOI: 10.1016/j.jhazmat.2014.12.046
Google Scholar
[11]
D. M. Sadek, Effect of cooling technique of blast furnace slag on the thermal behavior of solid cement bricks, Journal of Cleaner Production, vol. 79, pp.134-141, (2014).
DOI: 10.1016/j.jclepro.2014.05.033
Google Scholar
[12]
J. Garcia, L. Perez, A. Gorokhovsky, and L. Zamorano, Coarse blast furnace slag as a cementitious material, comparative study as a partial replacement of portland cement and as an alkali activated cement. , Constr. Build. Mater., vol. 23, pp.2511-2517, (2009).
DOI: 10.1016/j.conbuildmat.2009.02.002
Google Scholar
[13]
H. Oss, Iron and Steel Slag, U.S. Geological Survey, Mineral Commodity Summaries, pp.82-83, (2013).
Google Scholar
[14]
J. Davidovits, Geopolymer Chemistry and Applications, Institut Géopolymère, Saint-Quentin, (2008).
Google Scholar
[15]
J. Davidovits, The need to create a new technical language for the transfer of basic scientifi c information. In: Gibb, J.M., Nicolay, D. (eds. ) Transfer and Exploitation of Scientifi c and Technical Information, EUR 7716, p.316–320. Commission of the European Communities, Luxembourg , (1982).
Google Scholar
[16]
Q. Li, H. Xu, F. Li, P. Li, L. Shen, and J. P. Zhai, Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes, Fuel, vol. 97, p.366–372, (2012).
DOI: 10.1016/j.fuel.2012.02.059
Google Scholar
[17]
J. Temuujin, A. v. Riessen, and K. J. D. Mackenzie, Preparation and characterisation of fly ash based geopolymer mortars, Constr. Build Mater., vol. 24, p.1906–1910, (2010).
DOI: 10.1016/j.conbuildmat.2010.04.012
Google Scholar
[18]
B. Nematollahi, J. Sanjayan, and F. U. A. Shaikh, Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate, Ceramics International, (2015).
DOI: 10.1016/j.ceramint.2014.12.154
Google Scholar
[19]
B. A. Fillenwarth and S. M. L. Sastry, Development of a predictive optimization model for the compressive strength of sodium activated fly ash based geopolymer pastes, Fuel, vol. 147, pp.141-146, (2015).
DOI: 10.1016/j.fuel.2015.01.029
Google Scholar
[20]
P. K. Sarker, S. Kelly, and Z. Yao, Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete, Materials & Design, vol. 63, pp.584-592, (2014).
DOI: 10.1016/j.matdes.2014.06.059
Google Scholar
[21]
R. E. Davis, R. W. Carlson, J. W. Kelly, and H. E. Davis, Properties of cements and concretes containing fl y ash, J. Am. Concr. Inst, vol. 33, pp.577-612, (1937).
Google Scholar
[22]
A. R. Sakulich, Reinforced geopolymer composites for enhanced material greenness and durability, Sustainable Cities and Society, vol. 1, pp.195-210, (2011).
DOI: 10.1016/j.scs.2011.07.009
Google Scholar
[23]
M. Ahmaruzzaman, A review on the utilization of fly ash, Progress in Energy and Combustion Science, vol. 36, pp.327-363, (2010).
DOI: 10.1016/j.pecs.2009.11.003
Google Scholar
[24]
M. Drechsler and A. Graham, Geopolymers- an innovative materials technology bringing resource sustainability to construction and mining industries, Proceedings of the IQA Annual Conference, p.12–15, (2005).
Google Scholar
[25]
S. Kumar, R. Kumar, T. C. Alex, A. Bandopadhyay, and S. P. Mehrotra, Influence of reactivity of fly ash on geopolymerisation, Adv. Appl. Ceram, vol. 106, pp.120-127, (2007).
DOI: 10.1179/174367607x159293
Google Scholar
[26]
R. Kumar, S. Kumar, and S. P. Mehrotra, Towards sustainable solutions for fly ash through mechanical activation , Resour. Conserv. Recycl, vol. 52, pp.157-179, (2007).
DOI: 10.1016/j.resconrec.2007.06.007
Google Scholar
[27]
X. Fu, Q. Li, J. Zhai, G. Sheng, and F. Li, The physical–chemical characterization of mechanically-treated CFBC fly ash, Cem. Concr. Compos, vol. 30, pp.220-226, (2008).
DOI: 10.1016/j.cemconcomp.2007.08.006
Google Scholar
[28]
D. Hardjito, S. E. Wallah, D. M. Sumajouw, and B. V. Rangan, On the development of fly ash-based geopolymer concrete, ACI Mater. J, vol. 101, pp.467-472, (2004).
DOI: 10.1007/s10853-006-0523-8
Google Scholar
[29]
S. E. Wallah and B. V. Rangan, Low-Calcium Fly Ash-Based Geopolymer Concrete, Long-Term Properties. Research Report-GC2, Curtin University, Australia, pp.76-80, (2006).
Google Scholar
[30]
R. A. A. B. Santa, A. M. Bernardin, H. G. Riella, and N. C. Kuhnen, Geopolymer synthesized from bottom coal ash and calcined paper sludge, J. Clean. Prod, vol. 57, pp.302-307, (2013).
DOI: 10.1016/j.jclepro.2013.05.017
Google Scholar
[31]
B. Tempest, O. Sanusi, J. Gergely, V. Ogunro, and D. Weggel, Compressive strength and embodied energy optimization of fly ash based geopolymer concrete. In: Paper presented at the world of coal ash (WOCA)conference., (2009).
DOI: 10.1061/41165(397)135
Google Scholar
[32]
J. Kaufmann, J. Lubben, and E. Schwitter, Mechanical reinforcement of concrete with bi-component fibers, Composites Part A: Applied Science and Manufacturing, vol. 38, pp.1975-1984, (2007).
DOI: 10.1016/j.compositesa.2007.05.006
Google Scholar
[33]
A. Peyvandi, P. Soroushian, and S. Jahangirnejad, Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement, Construction and Building Materials, vol. 45, pp.36-44, (2013).
DOI: 10.1016/j.conbuildmat.2013.03.084
Google Scholar
[34]
Z. Yunsheng, S. Wei, L. Zongjin, Z. Xiangming, Eddie, and C. Chungkong, Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber, Construction and Building Materials vol. 22, p.370–383, (2008).
DOI: 10.1016/j.conbuildmat.2006.08.006
Google Scholar
[35]
S. T. Tassew and A. S. Lubell, Mechanical properties of glass fiber reinforced ceramic concrete, Construction and Building Materials, vol. 51, pp.215-224, (2014).
DOI: 10.1016/j.conbuildmat.2013.10.046
Google Scholar
[36]
T. M. Borhan, Properties of glass concrete reinforced with short basalt fibre, Materials & Design, vol. 42, pp.265-271, (2012).
DOI: 10.1016/j.matdes.2012.05.062
Google Scholar
[37]
E. Cuenca, J. Echegaray-Oviedo, and P. Serna, Influence of concrete matrix and type of fiber on the shear behavior of self-compacting fiber reinforced concrete beams, Composites Part B, vol. 75, pp.135-147, (2015).
DOI: 10.1016/j.compositesb.2015.01.037
Google Scholar
[38]
E. Cuenca and P. Serna, Shear behavior of prestressed precast beams made of selfcompacting fiber reinforced concrete, Construction Building Material vol. 45, pp.145-156, (2013).
DOI: 10.1016/j.conbuildmat.2013.03.096
Google Scholar
[39]
K. Kim, D. Lee, J. Hwang, and D. Kuchma, Shear behavior model for steel fiberreinforced concrete members without transverse reinforcements, Composite Part B, vol. 43, pp.2324-2334, (2012).
DOI: 10.1016/j.compositesb.2011.11.064
Google Scholar
[40]
G. Tiberti, F. Minelli, G. Plizzari, and F. Vecchio, Influence of concrete strength on crack development in SFRC members, Cemical Concrete Composite, vol. 45, pp.176-185, (2014).
DOI: 10.1016/j.cemconcomp.2013.10.004
Google Scholar
[41]
C. Chalioris, Analytical approach for the evaluation of minimum fibre factor required for steel fibrous concrete beams under combined shear and flexure, Constrion Building Material vol. 43, pp.317-336, (2013).
DOI: 10.1016/j.conbuildmat.2013.02.039
Google Scholar
[42]
P. Soroushian and Z. Bayasi, Fiber-type effects on the performance of steel fiber reinforced concrete, ACI Material J vol. 88, pp.129-134, (1991).
DOI: 10.14359/1883
Google Scholar
[43]
E. Cuenca and P. Serna, Shear behavior of self-compacting concrete and fiberreinforced concrete push-off specimens., in Design, production and placement of self-consolidating concrete. RILEM Bookseries. vol. 1, K. Khayat and D. Feys, Eds. Netherlands: Springer, 2010, pp.429-438.
DOI: 10.1007/978-90-481-9664-7_36
Google Scholar
[44]
E. Cuenca and P. F. Serna, Failure modes and shear design of prestressed hollow core slabs made of fiber-reinforced concrete, Composite Part B: Engineering, vol. 45, pp.952-964, (2013).
DOI: 10.1016/j.compositesb.2012.06.005
Google Scholar
[45]
T. Uygunog˘lu, Investigation of microstructure and flexural behavior of steel fiber reinforced concrete., Material Structure, vol. 41, pp.1441-1449, (2008).
DOI: 10.1617/s11527-007-9341-y
Google Scholar
[46]
Jiuru T, Chaobin H, Kaijian Y, and Y. Y, Seismic behaviour and shear strength of framed joint using steel–fiber reinforced concrete, Journal Structuce Engineering, vol. 118, pp.341-358, (1992).
DOI: 10.1061/(asce)0733-9445(1992)118:2(341)
Google Scholar
[47]
S. Wei, G. Jianming, and Y. Yun, Study of the fatigue performance and damage mechanism of steel fiber reinforced concrete, ACI Material J, vol. 93, pp.206-2012, (1996).
DOI: 10.14359/9804
Google Scholar
[48]
W. Yin and T. Hsu, Fatigue behaviour of steel fiber reinforced concrete in uniaxial and biaxial compression, ACI Material J, vol. 92, pp.71-81, (1995).
DOI: 10.14359/1415
Google Scholar
[49]
P. Balaguru and V. Ramakrishnan, Properties of fiber reinforced concrete: workability, behavior under long-term loading, and air-void characteristics, Material J, vol. 85, pp.189-196, (1988).
DOI: 10.14359/1849
Google Scholar
[50]
P. Wainwright and N. Rey, The influence of ground granulated blast furnace slag (GGBS) additions and time delay on the bleeding of concrete, Cem Concr Compos, vol. 22, pp.253-257, (2000).
DOI: 10.1016/s0958-9465(00)00024-x
Google Scholar
[51]
I. Topçu and V. Elgün, Influence of concrete properties on bleeding and evaporation, Cem Concr Res, vol. 34, pp.275-281, (2004).
DOI: 10.1016/j.cemconres.2003.07.004
Google Scholar
[52]
R. Ravindrarajah, Bleeding of fresh concrete containing cement supplementary materials, in The ninth east Asia-Pacific conference on structural engineering and construction, Bali, Indonesia, (2003).
Google Scholar