Review on Different Types of Geopolymer Concrete Fibres

Article Preview

Abstract:

Ordinary Portland Cement (OPC) has been used over the than hundred years for material construction especially as a binder in production of concrete. However, there are a few disadvantages with the using of OPC that have been found especially in terms of properties and green house effect. This paper reviews the potential of an alternative binder material with no cement usage (cementless) called as “geopolymer”. The history of the development geopolymer will be described. Different types of base materials used in the formation of geopolymer will be explained in details. The influence of different types of fibres to the mechanical properties especially compressive strength and flexural strength were explained well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

388-394

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. C. Association, Coal & Electricity, (2015).

Google Scholar

[2] I. E. Agency, Case Studies in Sustainable Development in theCoal Industry, France, (2006).

Google Scholar

[3] A. Hutagi, R. B. Khadiranaikar, and R. Shemblle, A Study on Fiber Reinforced Geopolymer Concrete, Journal of Civil Engineering Technology and Research, vol. 2, pp.15-22, (2014).

Google Scholar

[4] P. Duxson and J. L. Provis, Low CO2 concrete: Are we making any progress?, BEDP environment design guide Royal Australian Institute of Architects (2008).

Google Scholar

[5] F. Pacheco-Torgal, J. Castro-Gomes, and S. Jalali, Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products, Construction and Building Materials, vol. 22, pp.1305-1314, (2008).

DOI: 10.1016/j.conbuildmat.2007.10.015

Google Scholar

[6] E. Benhelal, G. Zahedi, E. Shamsaei, and A. Bahadori, Global strategies and potentials to curb CO2 emissions in cement industry, Journal of Cleaner Production, vol. 51, pp.142-161, (2013).

DOI: 10.1016/j.jclepro.2012.10.049

Google Scholar

[7] Rangan B. V, Low calcium flyash based geopolymer concrete. New York: CRC Press; , (2007).

Google Scholar

[8] Shaikh and F. U. Ahmed, Review of mechanical properties of short fibre reinforced geopolymer composites, Construction and Building Materials, vol. 43, pp.37-49, (2013).

DOI: 10.1016/j.conbuildmat.2013.01.026

Google Scholar

[9] A. Natali, S. Manzia, and M. C. Bignozzia, Novel fiber-reinforced composite materials based on sustainable geopolymer matrix, Procedia Engineering vol. 21, pp.1124-1131, (2011).

DOI: 10.1016/j.proeng.2011.11.2120

Google Scholar

[10] M. Salmana, Ö. Cizer, Y. Pontikes, R. Snellings, L. Vandewalle, B. Blanpain, and K. V. Balen, Cementitious binders from activated stainless steel refining slag andthe effect of alkali solutions, Journal of Hazardous Materials, vol. 286 p.211–219, (2015).

DOI: 10.1016/j.jhazmat.2014.12.046

Google Scholar

[11] D. M. Sadek, Effect of cooling technique of blast furnace slag on the thermal behavior of solid cement bricks, Journal of Cleaner Production, vol. 79, pp.134-141, (2014).

DOI: 10.1016/j.jclepro.2014.05.033

Google Scholar

[12] J. Garcia, L. Perez, A. Gorokhovsky, and L. Zamorano, Coarse blast furnace slag as a cementitious material, comparative study as a partial replacement of portland cement and as an alkali activated cement. , Constr. Build. Mater., vol. 23, pp.2511-2517, (2009).

DOI: 10.1016/j.conbuildmat.2009.02.002

Google Scholar

[13] H. Oss, Iron and Steel Slag, U.S. Geological Survey, Mineral Commodity Summaries, pp.82-83, (2013).

Google Scholar

[14] J. Davidovits, Geopolymer Chemistry and Applications, Institut Géopolymère, Saint-Quentin, (2008).

Google Scholar

[15] J. Davidovits, The need to create a new technical language for the transfer of basic scientifi c information. In: Gibb, J.M., Nicolay, D. (eds. ) Transfer and Exploitation of Scientifi c and Technical Information, EUR 7716, p.316–320. Commission of the European Communities, Luxembourg , (1982).

Google Scholar

[16] Q. Li, H. Xu, F. Li, P. Li, L. Shen, and J. P. Zhai, Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes, Fuel, vol. 97, p.366–372, (2012).

DOI: 10.1016/j.fuel.2012.02.059

Google Scholar

[17] J. Temuujin, A. v. Riessen, and K. J. D. Mackenzie, Preparation and characterisation of fly ash based geopolymer mortars, Constr. Build Mater., vol. 24, p.1906–1910, (2010).

DOI: 10.1016/j.conbuildmat.2010.04.012

Google Scholar

[18] B. Nematollahi, J. Sanjayan, and F. U. A. Shaikh, Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate, Ceramics International, (2015).

DOI: 10.1016/j.ceramint.2014.12.154

Google Scholar

[19] B. A. Fillenwarth and S. M. L. Sastry, Development of a predictive optimization model for the compressive strength of sodium activated fly ash based geopolymer pastes, Fuel, vol. 147, pp.141-146, (2015).

DOI: 10.1016/j.fuel.2015.01.029

Google Scholar

[20] P. K. Sarker, S. Kelly, and Z. Yao, Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete, Materials & Design, vol. 63, pp.584-592, (2014).

DOI: 10.1016/j.matdes.2014.06.059

Google Scholar

[21] R. E. Davis, R. W. Carlson, J. W. Kelly, and H. E. Davis, Properties of cements and concretes containing fl y ash, J. Am. Concr. Inst, vol. 33, pp.577-612, (1937).

Google Scholar

[22] A. R. Sakulich, Reinforced geopolymer composites for enhanced material greenness and durability, Sustainable Cities and Society, vol. 1, pp.195-210, (2011).

DOI: 10.1016/j.scs.2011.07.009

Google Scholar

[23] M. Ahmaruzzaman, A review on the utilization of fly ash, Progress in Energy and Combustion Science, vol. 36, pp.327-363, (2010).

DOI: 10.1016/j.pecs.2009.11.003

Google Scholar

[24] M. Drechsler and A. Graham, Geopolymers- an innovative materials technology bringing resource sustainability to construction and mining industries, Proceedings of the IQA Annual Conference, p.12–15, (2005).

Google Scholar

[25] S. Kumar, R. Kumar, T. C. Alex, A. Bandopadhyay, and S. P. Mehrotra, Influence of reactivity of fly ash on geopolymerisation, Adv. Appl. Ceram, vol. 106, pp.120-127, (2007).

DOI: 10.1179/174367607x159293

Google Scholar

[26] R. Kumar, S. Kumar, and S. P. Mehrotra, Towards sustainable solutions for fly ash through mechanical activation , Resour. Conserv. Recycl, vol. 52, pp.157-179, (2007).

DOI: 10.1016/j.resconrec.2007.06.007

Google Scholar

[27] X. Fu, Q. Li, J. Zhai, G. Sheng, and F. Li, The physical–chemical characterization of mechanically-treated CFBC fly ash, Cem. Concr. Compos, vol. 30, pp.220-226, (2008).

DOI: 10.1016/j.cemconcomp.2007.08.006

Google Scholar

[28] D. Hardjito, S. E. Wallah, D. M. Sumajouw, and B. V. Rangan, On the development of fly ash-based geopolymer concrete, ACI Mater. J, vol. 101, pp.467-472, (2004).

DOI: 10.1007/s10853-006-0523-8

Google Scholar

[29] S. E. Wallah and B. V. Rangan, Low-Calcium Fly Ash-Based Geopolymer Concrete, Long-Term Properties. Research Report-GC2, Curtin University, Australia, pp.76-80, (2006).

Google Scholar

[30] R. A. A. B. Santa, A. M. Bernardin, H. G. Riella, and N. C. Kuhnen, Geopolymer synthesized from bottom coal ash and calcined paper sludge, J. Clean. Prod, vol. 57, pp.302-307, (2013).

DOI: 10.1016/j.jclepro.2013.05.017

Google Scholar

[31] B. Tempest, O. Sanusi, J. Gergely, V. Ogunro, and D. Weggel, Compressive strength and embodied energy optimization of fly ash based geopolymer concrete. In: Paper presented at the world of coal ash (WOCA)conference., (2009).

DOI: 10.1061/41165(397)135

Google Scholar

[32] J. Kaufmann, J. Lubben, and E. Schwitter, Mechanical reinforcement of concrete with bi-component fibers, Composites Part A: Applied Science and Manufacturing, vol. 38, pp.1975-1984, (2007).

DOI: 10.1016/j.compositesa.2007.05.006

Google Scholar

[33] A. Peyvandi, P. Soroushian, and S. Jahangirnejad, Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement, Construction and Building Materials, vol. 45, pp.36-44, (2013).

DOI: 10.1016/j.conbuildmat.2013.03.084

Google Scholar

[34] Z. Yunsheng, S. Wei, L. Zongjin, Z. Xiangming, Eddie, and C. Chungkong, Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber, Construction and Building Materials vol. 22, p.370–383, (2008).

DOI: 10.1016/j.conbuildmat.2006.08.006

Google Scholar

[35] S. T. Tassew and A. S. Lubell, Mechanical properties of glass fiber reinforced ceramic concrete, Construction and Building Materials, vol. 51, pp.215-224, (2014).

DOI: 10.1016/j.conbuildmat.2013.10.046

Google Scholar

[36] T. M. Borhan, Properties of glass concrete reinforced with short basalt fibre, Materials & Design, vol. 42, pp.265-271, (2012).

DOI: 10.1016/j.matdes.2012.05.062

Google Scholar

[37] E. Cuenca, J. Echegaray-Oviedo, and P. Serna, Influence of concrete matrix and type of fiber on the shear behavior of self-compacting fiber reinforced concrete beams, Composites Part B, vol. 75, pp.135-147, (2015).

DOI: 10.1016/j.compositesb.2015.01.037

Google Scholar

[38] E. Cuenca and P. Serna, Shear behavior of prestressed precast beams made of selfcompacting fiber reinforced concrete, Construction Building Material vol. 45, pp.145-156, (2013).

DOI: 10.1016/j.conbuildmat.2013.03.096

Google Scholar

[39] K. Kim, D. Lee, J. Hwang, and D. Kuchma, Shear behavior model for steel fiberreinforced concrete members without transverse reinforcements, Composite Part B, vol. 43, pp.2324-2334, (2012).

DOI: 10.1016/j.compositesb.2011.11.064

Google Scholar

[40] G. Tiberti, F. Minelli, G. Plizzari, and F. Vecchio, Influence of concrete strength on crack development in SFRC members, Cemical Concrete Composite, vol. 45, pp.176-185, (2014).

DOI: 10.1016/j.cemconcomp.2013.10.004

Google Scholar

[41] C. Chalioris, Analytical approach for the evaluation of minimum fibre factor required for steel fibrous concrete beams under combined shear and flexure, Constrion Building Material vol. 43, pp.317-336, (2013).

DOI: 10.1016/j.conbuildmat.2013.02.039

Google Scholar

[42] P. Soroushian and Z. Bayasi, Fiber-type effects on the performance of steel fiber reinforced concrete, ACI Material J vol. 88, pp.129-134, (1991).

DOI: 10.14359/1883

Google Scholar

[43] E. Cuenca and P. Serna, Shear behavior of self-compacting concrete and fiberreinforced concrete push-off specimens., in Design, production and placement of self-consolidating concrete. RILEM Bookseries. vol. 1, K. Khayat and D. Feys, Eds. Netherlands: Springer, 2010, pp.429-438.

DOI: 10.1007/978-90-481-9664-7_36

Google Scholar

[44] E. Cuenca and P. F. Serna, Failure modes and shear design of prestressed hollow core slabs made of fiber-reinforced concrete, Composite Part B: Engineering, vol. 45, pp.952-964, (2013).

DOI: 10.1016/j.compositesb.2012.06.005

Google Scholar

[45] T. Uygunog˘lu, Investigation of microstructure and flexural behavior of steel fiber reinforced concrete., Material Structure, vol. 41, pp.1441-1449, (2008).

DOI: 10.1617/s11527-007-9341-y

Google Scholar

[46] Jiuru T, Chaobin H, Kaijian Y, and Y. Y, Seismic behaviour and shear strength of framed joint using steel–fiber reinforced concrete, Journal Structuce Engineering, vol. 118, pp.341-358, (1992).

DOI: 10.1061/(asce)0733-9445(1992)118:2(341)

Google Scholar

[47] S. Wei, G. Jianming, and Y. Yun, Study of the fatigue performance and damage mechanism of steel fiber reinforced concrete, ACI Material J, vol. 93, pp.206-2012, (1996).

DOI: 10.14359/9804

Google Scholar

[48] W. Yin and T. Hsu, Fatigue behaviour of steel fiber reinforced concrete in uniaxial and biaxial compression, ACI Material J, vol. 92, pp.71-81, (1995).

DOI: 10.14359/1415

Google Scholar

[49] P. Balaguru and V. Ramakrishnan, Properties of fiber reinforced concrete: workability, behavior under long-term loading, and air-void characteristics, Material J, vol. 85, pp.189-196, (1988).

DOI: 10.14359/1849

Google Scholar

[50] P. Wainwright and N. Rey, The influence of ground granulated blast furnace slag (GGBS) additions and time delay on the bleeding of concrete, Cem Concr Compos, vol. 22, pp.253-257, (2000).

DOI: 10.1016/s0958-9465(00)00024-x

Google Scholar

[51] I. Topçu and V. Elgün, Influence of concrete properties on bleeding and evaporation, Cem Concr Res, vol. 34, pp.275-281, (2004).

DOI: 10.1016/j.cemconres.2003.07.004

Google Scholar

[52] R. Ravindrarajah, Bleeding of fresh concrete containing cement supplementary materials, in The ninth east Asia-Pacific conference on structural engineering and construction, Bali, Indonesia, (2003).

Google Scholar