Effect of Coal Ash Properties on Compressive Strength of Bottom Ash-Based Geopolymer Concrete

Article Preview

Abstract:

This paper presents the results of an experimental study on the behavior of bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. A total of five bathes of bottom ash-based GPC were manufactured. The influence of the particle size and chemical composition of bottom ash on the compressive strength of GPC was investigated. The results indicate that the investigated parameters significantly affect the 28-day compressive strength of bottom ash-based GPCs. It is also found that the strength gain of ambiently-cured coal ash-based GPCs continues beyond the concrete age of 28 days.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

395-399

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wallah. S.E. and Rangan B.V. (2006). Low-calcium fly ash-based geopolymer concrete: long-term properties. Res. Report-GC2, Curtin University, Australia. 76-80.

Google Scholar

[2] Pacheco-Torgal. F., Castro-Gomes. J. and Salali. S. (2008). Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. Construction and Building Materials, 22(7), 1305-1314.

DOI: 10.1016/j.conbuildmat.2007.10.015

Google Scholar

[3] Temuujin. J., Williams. R.P. and Van Riessen. A. (2009). Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. Journal of Materials Processing Technology, 209(12), 5276-5280.

DOI: 10.1016/j.jmatprotec.2009.03.016

Google Scholar

[4] ul Haq. E., Padmanabhan. S.K. and Licciulli. A. (2014). Synthesis and characteristics of fly ash and bottom ash based geopolymers–a comparative study. Ceramics International, 40(2), 2965-2971.

DOI: 10.1016/j.ceramint.2013.10.012

Google Scholar

[5] Xie. T. and Ozbakkaloglu. T. (2015). Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceramics International, 41(4), 5945-5958.

DOI: 10.1016/j.ceramint.2015.01.031

Google Scholar

[6] Topcu. I. B. and Mehmet U.T. (2011). Properties of geopolymer from circulating fluidized bed combustion coal bottom ash. Materials Science and Engineering A, 528(3), 1472-1477.

DOI: 10.1016/j.msea.2010.10.062

Google Scholar

[7] Kim. S.H., Ryu. G.S., Koh. K.T. and Lee. J.H. (2012).

Google Scholar

[8] Santa. R.A.A.B., Bernardin. A.M., Riella. H.G. and Kuhnen. N.C. (2013). Geopolymer synthetized from bottom coal ash and calcined paper sludge. Journal of Cleaner Production, 57, 302-307.

DOI: 10.1016/j.jclepro.2013.05.017

Google Scholar

[9] Xie. T. and Ozbakkaloglu. T. (2015). Influence of coal ash properties on compressive behaviour of FA-and BA-based GPC. Magazine of Concrete Research, doi: 10. 1680/macr. 14. 00429.

DOI: 10.1680/macr.14.00429

Google Scholar

[10] Temuujin, J., R. P. Williams., and Van Riessen. A. (2009). Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. Journal of Materials Processing Technology, 209(12), 5276-5280.

DOI: 10.1016/j.jmatprotec.2009.03.016

Google Scholar

[11] Diaz. E.I., Allouche. E. N. and S. Eklund. (2010). Factors affecting the suitability of fly ash as source material for geopolymers. Fuel, 89(5), 992-996.

DOI: 10.1016/j.fuel.2009.09.012

Google Scholar

[12] De Silva. P., Sagoe-Crenstil. K. and Sirivivatnanon. V. (2007). Kinetics of geopolymerization: role of Al2O3 and SiO2. Cement and Concrete Research, 37(4), 512-518.

DOI: 10.1016/j.cemconres.2007.01.003

Google Scholar

[13] Temuujin. J., Van Riessen. A. and Williams. R. (2009). Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. Journal of hazardous materials, 167(1), 82-88.

DOI: 10.1016/j.jhazmat.2008.12.121

Google Scholar