Electrochemical Properties of Multi-Wall Carbon Nanotubes as a Novel Negative Electrode for Calcium Secondary Batteries

Article Preview

Abstract:

We investigated the electrochemical behavior and properties of multi-wall carbon nanotubes (MWCNTs) as a novel negative electrode for calcium ion batteries during charging and discharging. The second charge and discharge capacities were ~63 and ~43 mAh g–1 in propylene carbonate-based electrolyte and ~86 and ~60 mAh g–1 in ethylene carbonate-based electrolyte, respectively. X-ray diffraction analysis results showed that the inter-layer distance of the MWCNTs was increased after charging, indicating that calcium ions were intercalated into the MWCNT graphitic sheets during the charging. The electrochemical performance of the MWCNT electrode was improved by using ball milling to introduce defects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-78

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Datta, J. Li, V.B. Shenoy, Appl. Mater. Interfaces 6 (2014) 1788-1795.

Google Scholar

[2] B. Peng, J. Liang, Z. Tao, J. Chen, J. Mater. Chem. 19 (2009) 2877-2883.

Google Scholar

[3] N. Wu, Z.Z. Yang, H.R. Yao, Y.X. Yin, L. Gu, Y.G. Guo, Angew. Chem. 54 (2015) 5757-5761.

Google Scholar

[4] T.D. Gregory, R.J. Hoffman, R. Winterston, J. Electrochem. Soc. 137 (1990) 775-760.

Google Scholar

[5] P. Novak, W. Scheifele, O. Haas, J. Power Sources 54 (1995) 479-482.

Google Scholar

[6] D.B. Le, S. Passerini, F. Coustier, J. Guo, T. Soderstrom, B.B. Owens, W.H. Smyrl, Chem. Mater. 10 (1998) 682-684.

DOI: 10.1021/cm9705101

Google Scholar

[7] G.G. Amatucci, F. Badway, A. Singhal, B. Beaudoin, G. Skandan, T. Bowmer, I. Plitz, N. Pereira, T. Chapman, R. Jaworski, J. Electrochem. Soc. 148 (2001) A940-950.

DOI: 10.1149/1.1383777

Google Scholar

[8] M. Hayashi, H. Arai, H. Ohtsuka, Y. Sakurai, J. Power Sources 119-121 (2003) 617-620.

Google Scholar

[9] N. Emery, C. Herold, P. Lagrange, J. Solid State Chem. 178 (2005) 2947-2952.

Google Scholar

[10] T.E. Weller, M. Ellerby, S.S. Saxena, R.P. Smith, N.T. Skipper, Nat. Phys. 1 (2005) 39-41.

Google Scholar

[11] M. Westerhausen, Z. Anorg, Allg. Chem. 635 (2009) 13-32.

Google Scholar

[12] Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, T. Hayashi, Phys. Rev. B 48 (1993) 1907-(1909).

Google Scholar

[13] O. Zhou, R.M. Fleming, D.W. Murphy, C.H. Chen, R.C. Haddon, A.P. Ramirez, S.H. Glarum, Science 263 (1994) 1744-1747.

DOI: 10.1126/science.263.5154.1744

Google Scholar

[14] A. Cao, C. Xu, J. Liang, D. Wu, B. Wei, Chem. Phys. Lett. 344 (2001) 13-17.

Google Scholar

[15] D. Reznik, C.H. Olk, D.A. Neumann, J.R.D. Copley, Phys. Rev. B 52 (1995) 116-124.

Google Scholar