Ag-Enhanced Antibacterial Property of MgO Film

Article Preview

Abstract:

MgO and silver-containing MgO (AgMgO, 3.3, 9.1 at% Ag) films were sol-gel coated on titanium to improve its antibacterial property. Thermal analyses of MgAc2·4H2O powder revealed that MgO was crystallized at 400 °C. X-ray diffraction analysis showed that MgO was converted to Mg(OH)2 or Mg5(CO3)4(OH)2·4H2O during the ageing in air. Silver nanoparticles at the surface of AgMgO films were identified by scanning electron microscopy and x-ray photoelectron spectroscopy. The MgO film was about 1.5 um thick. The potentiodynamic polarization test in the Ca-free Hank’s balanced salt solution showed that the coated titanium samples had better corrosion resistance than the polished one. The dissolution of silver nanoparticles resulted in a current peak in the polarization plots. In the antibacterial test against E. Coli, the inhibition zone width was 0.3, 1.6, 2.0 mm for the films with 0, 3.3, 9.1 at% Ag, respectively. The bactericidal mechanisms of the MgO and AgMgO films were discussed. The present work would provide a facile method for antibacterial surface modification of titanium based osteo-implants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-95

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. W. Costerton, P. S. Stewart, and E. P. Greenberg: Science, 1999, 284(5418), 1318-1322.

Google Scholar

[2] W. Chen, Y. Liu, H. S. Courtney, M. Bettenga, C. M. Agrawal, J. D. Bumgardner, and J. L. Ong: Biomaterials, 2006, 27(32), 5512-5517.

DOI: 10.1016/j.biomaterials.2006.07.003

Google Scholar

[3] S. Erakovic, A. Jankovic, C. Ristoscu, L. Duta, N. Serban, A. Visan, I. N. Mihailescu, G. E. Stan, M. Socol, O. Iordache, I. Dumitrescu, C. R. Luculescu, D. Janackovic, and V. Miskovic-Stankovic: Applied Surface Science, 2014, 293, 37-45.

DOI: 10.1016/j.apsusc.2013.12.029

Google Scholar

[4] Y. Yonekura, H. Miyamoto, T. Shimazaki, Y. Ando, I. Noda, M. Mawatari, and T. Hotokebuchi: Journal of Bone and Joint Surgery-British Volume, 2011, 93B(5), 644-649.

DOI: 10.1302/0301-620x.93b5.25518

Google Scholar

[5] J. Qu, X. Lu, D. Li, Y. H. Ding, Y. Leng, J. Weng, S. X. Qu, B. Feng, and F. Watari: Journal of Biomedical Materials Research Part B, 2011, 97B(1), 40-48.

DOI: 10.1002/jbm.b.31784

Google Scholar

[6] K. Krishnamoorthy, G. Manivannan, S. J. Kim, K. Jeyasubramanian, and M. Premanathan: Journal of Nanoparticle Research, 2012, 14(9), 1063.

Google Scholar

[7] Y. Y. Rao, W. Wang, F. T. Tan, Y. C. Cai, J. W. Lu, and X. L. Qiao: Applied Surface Science, 2013, 284, 726-731.

Google Scholar

[8] S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelinek, and A. Gedanken: Advanced Functional Materials, 2005, 15(10), 1708-1715.

DOI: 10.1002/adfm.200500029

Google Scholar

[9] Y. Harada and S. Kumai: Surface & Coatings Technology, 2013, 228, 59-67.

Google Scholar

[10] T. Fu, Y. Shen, Z. Alajmi, Y. Wang, S. Yang, and G. Li: Ceramics International, 2014, 40(8), 12423-12429.

Google Scholar

[11] B. A. Akgun, C. Durucan, and N. P. Mellott: Journal of Sol-Gel Science and Technology, 2011, 58(1), 277-289.

Google Scholar

[12] Z. Bazhan, F. E. Ghodsi, and J. Mazloom: Bulletin of Materials Science, 2013, 36(5), 899-905.

Google Scholar

[13] B. Zhao and Y. W. Chen: Journal of Physics and Chemistry of Solids, 2011, 72(11), 1312-1318.

Google Scholar

[14] S. D. F. Rocha, M. B. Mansur, and V. S. T. Ciminelli: Journal of Chemical Technology and Biotechnology, 2004, 79(8), 816-821.

Google Scholar

[15] J. H. Nordlien, S. Ono, N. Masuko, and K. Nisancioglu: Journal of the Electrochemical Society, 1995, 142(10), 3320-3322.

Google Scholar

[16] Y. M. Ko, K. Lee, and B. H. Kim: Surface & Coatings Technology, 2013, 228, S404-S407.

Google Scholar

[17] Y. H. Leung, A. M. C. Ng, X. Xu, Z. Shen, L. A. Gethings, M. T. Wong, C. M. N. Chan, M. Y. Guo, Y. H. Ng, A. B. Djurisic, P. K. H. Lee, W. K. Chan, L. H. Yu, D. L. Phillips, A. P. Y. Ma, and F. C. C. Leung: Small, 2014, 10(6), 1171-1183.

DOI: 10.1002/smll.201302434

Google Scholar

[18] K. Loza, J. Diendorf, C. Sengstock, L. Ruiz-Gonzalez, J. M. Gonzalez-Calbet, M. Vallet-Regi, M. Koller, and M. Epple: Journal of Materials Chemistry B, 2014, 2(12), 1634-1643.

DOI: 10.1039/c3tb21569e

Google Scholar